Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

19.09.2019 | Methodologies and Application | Ausgabe 10/2020

Soft Computing 10/2020

Adaptive Kaniadakis entropy thresholding segmentation algorithm based on particle swarm optimization

Zeitschrift:
Soft Computing > Ausgabe 10/2020
Autoren:
Bo Lei, Jiu-lun Fan
Wichtige Hinweise
Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Kaniadakis entropy is a kind of generalized entropy based on the \( \kappa \) probability distribution, which has a good ability to deal with the distribution of long tail. The image thresholding algorithm based on Kaniadakis entropy can effectively segment images with long-tailed distribution histograms, such as nondestructive testing image. However, Kaniadakis entropy is a generalized information entropy with parameter. How to choose appropriate parameter \( \kappa \) is a problem to be solved. In this paper, we proposed an adaptive parameter selection Kaniadakis entropy thresholding algorithm. Based on a clustering effectiveness evaluation index, we transform the parameter selection problem into an optimization problem, then use particle swarm optimization search algorithm to optimize it and finally obtain the segmentation threshold under the optimal parameter. The presented algorithm can adaptively select parameters according to different images and obtain the optimal segmentation images. In order to show the effectiveness of the proposed method, the segmentation results are compared with several existing entropy-based thresholding algorithms. Experimental results both qualitatively and quantitatively demonstrate that the proposed method is effective.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 10/2020

Soft Computing 10/2020 Zur Ausgabe

Premium Partner

    Bildnachweise