Skip to main content
Erschienen in: Neural Processing Letters 1/2016

01.08.2016

Adaptive Network-Based Fuzzy Inference Systems Coupled with Genetic Algorithms for Predicting Soil Permeability Coefficient

verfasst von: Hadi Ganjidoost, S. Jamshid Mousavi, Abbas Soroush

Erschienen in: Neural Processing Letters | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper extends hybrid-type optimization models of genetic algorithm adaptive network-based fuzzy inference system (GA-ANFIS) for predicting the soil permeability coefficient (SPC) of different types of soil. In these models, GA optimizes parameters of a subtractive clustering technique that controls the structure of the ANFIS model’s fuzzy rule base. Simultaneously, a hybrid leaning algorithm is employed in the ANFIS, as a trained fuzzy inference system (FIS), which optimally determines the parameter sets of the examined FISs in ANFIS. Using an updated large database of SPCs consisting of 338 fine-grained, 178 mixed and 94 granular soil samples, GA-ANFIS framework constructs different models of predicting the permeability coefficient of respectively fine-grained, mixed and granular soils. A fuzzy C-mean technique has been used to cluster the entire data samples of each type of soil and divide them uniformly into training and testing data sets. Different prediction models of SPC have been trained and tested for each of the three soil types, and the appropriate models have been selected. The selected models have been compared with ANN and modified-by-GA empirical prediction models. Results show that the constructed GA-ANFIS models outperform the other models in terms of the prediction accuracy and the generalization capability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hazen A (1892) Some physical properties of sands and gravels. Massachusetts State Board of Health Annual Report, 539–556 Hazen A (1892) Some physical properties of sands and gravels. Massachusetts State Board of Health Annual Report, 539–556
2.
Zurück zum Zitat Kenny TC, Lau D, Ofoegbu GI (1984) Permeability of compacted granular materials. Can Geotech J 21:726–729CrossRef Kenny TC, Lau D, Ofoegbu GI (1984) Permeability of compacted granular materials. Can Geotech J 21:726–729CrossRef
3.
Zurück zum Zitat Cedergren HR (1988) Seepage drainage and flow nets, 3rd edn. Wiley, Hoboken Cedergren HR (1988) Seepage drainage and flow nets, 3rd edn. Wiley, Hoboken
4.
Zurück zum Zitat D’Appolonia DJ (1980) Soil-bentonite slurry trench cutoffs. J Geotech Geoenviron Eng ASCE 106(4):399–417 D’Appolonia DJ (1980) Soil-bentonite slurry trench cutoffs. J Geotech Geoenviron Eng ASCE 106(4):399–417
5.
Zurück zum Zitat Daniel D (1987) Earthen liners for land disposal facilities. Geotechnical practice for waste disposal ‘87, vol 13. ASCE, New York, pp 21–39 Daniel D (1987) Earthen liners for land disposal facilities. Geotechnical practice for waste disposal ‘87, vol 13. ASCE, New York, pp 21–39
6.
Zurück zum Zitat Kenney TC, Van Veen WA, Swallow MA, Sungaila MA (1992) Hydraulic conductivity of compacted bentonite-sand mixtures. Can Geotech J 29(3):364–374CrossRef Kenney TC, Van Veen WA, Swallow MA, Sungaila MA (1992) Hydraulic conductivity of compacted bentonite-sand mixtures. Can Geotech J 29(3):364–374CrossRef
7.
Zurück zum Zitat Ryan CR (1987) Vertical barriers in soil for pollution containment. Geotechnical practice for waste disposal, vol 13. ASCE, New York, pp 182–204 Ryan CR (1987) Vertical barriers in soil for pollution containment. Geotechnical practice for waste disposal, vol 13. ASCE, New York, pp 182–204
8.
Zurück zum Zitat Shelley TL, Daniel DE (1993) Effect of gravel on hydraulic conductivity of compacted soil liners. J Geotech Eng 119(1):54–68CrossRef Shelley TL, Daniel DE (1993) Effect of gravel on hydraulic conductivity of compacted soil liners. J Geotech Eng 119(1):54–68CrossRef
9.
Zurück zum Zitat Shakoor A, Cook BD (1990) The effects of stone content, size, and shape on the engineering properties of a compacted silty clay. Bull Assoc Eng Geol 27:245–253 Shakoor A, Cook BD (1990) The effects of stone content, size, and shape on the engineering properties of a compacted silty clay. Bull Assoc Eng Geol 27:245–253
10.
Zurück zum Zitat Shafiee A (2008) Permeability of compacted granule-clay mixtures. Eng Geol 97(11):199–208CrossRef Shafiee A (2008) Permeability of compacted granule-clay mixtures. Eng Geol 97(11):199–208CrossRef
11.
Zurück zum Zitat Lambe TW, Whitman RV (2008) Soil mechanics. SI version. Wiley India Pvt. Limited, Hoboken Lambe TW, Whitman RV (2008) Soil mechanics. SI version. Wiley India Pvt. Limited, Hoboken
12.
Zurück zum Zitat Mesri G, Olson RE (1971) Mechanism controlling the permeability of clays. Clay Clay Miner 19:151–158CrossRef Mesri G, Olson RE (1971) Mechanism controlling the permeability of clays. Clay Clay Miner 19:151–158CrossRef
13.
Zurück zum Zitat Mitchell JK, Soga K (2005) Fundamentals of soil behavior. Wiley, Hoboken Mitchell JK, Soga K (2005) Fundamentals of soil behavior. Wiley, Hoboken
14.
Zurück zum Zitat Cary AS, Walter BH, Harstad HT (1943) Permeability of mud mountain dam core material. Trans Am Soc Civ Eng 108:719–728 Cary AS, Walter BH, Harstad HT (1943) Permeability of mud mountain dam core material. Trans Am Soc Civ Eng 108:719–728
15.
Zurück zum Zitat Acar YB, Olivieri I (1989) Pore fluid effects on the fabric and hydraulic conductivity of laboratory-compacted clay. Transport Res Record 1219:144–159 Acar YB, Olivieri I (1989) Pore fluid effects on the fabric and hydraulic conductivity of laboratory-compacted clay. Transport Res Record 1219:144–159
16.
Zurück zum Zitat Cronican AE, Gribb MM (2004) Hydraulic conductivity prediction for sandy soils. Supplement entitled: equations for predicting hydraulic conductivity based on grain-size data. Ground Water 42:459–464CrossRef Cronican AE, Gribb MM (2004) Hydraulic conductivity prediction for sandy soils. Supplement entitled: equations for predicting hydraulic conductivity based on grain-size data. Ground Water 42:459–464CrossRef
17.
Zurück zum Zitat Amer AM, Awad AA (1974) Permeability of cohesionless soils. J Geotech Eng Div ASCE 100(GT12):1309–1316 Amer AM, Awad AA (1974) Permeability of cohesionless soils. J Geotech Eng Div ASCE 100(GT12):1309–1316
18.
Zurück zum Zitat Chapuis RP, Gill DE, Baass K (1989) Laboratory permeability tests on sand: influence of the compaction method on anisotropy. Can Geotech J 26:614–622CrossRef Chapuis RP, Gill DE, Baass K (1989) Laboratory permeability tests on sand: influence of the compaction method on anisotropy. Can Geotech J 26:614–622CrossRef
19.
Zurück zum Zitat Odong J (2007) Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis. J Am Sci 3(3):54–60 Odong J (2007) Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis. J Am Sci 3(3):54–60
20.
Zurück zum Zitat Alyamani MS, Sen Z (1993) Determination of hydraulic conductivity from complete grain-size distribution curves. Ground Water 31(4):551–555CrossRef Alyamani MS, Sen Z (1993) Determination of hydraulic conductivity from complete grain-size distribution curves. Ground Water 31(4):551–555CrossRef
21.
Zurück zum Zitat Sperry JM, Peirce JJ (1995) A model for estimating the hydraulic conductivity of granular material based on grain shape, grain size, and porosity. Ground Water 33(6):892–898CrossRef Sperry JM, Peirce JJ (1995) A model for estimating the hydraulic conductivity of granular material based on grain shape, grain size, and porosity. Ground Water 33(6):892–898CrossRef
22.
Zurück zum Zitat Carrier DW (2003) Goodbye, hazen; hello, kozaney-carman. J Geotech Geoenviron Eng ASCE 129(11):1054–1056CrossRef Carrier DW (2003) Goodbye, hazen; hello, kozaney-carman. J Geotech Geoenviron Eng ASCE 129(11):1054–1056CrossRef
23.
Zurück zum Zitat Chapuis RP (2004) Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can Geotech J 41(11):787–795CrossRef Chapuis RP (2004) Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can Geotech J 41(11):787–795CrossRef
24.
Zurück zum Zitat Kresic N (2007) Quantitative solutions in hydrogeology and groundwater modeling, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton Kresic N (2007) Quantitative solutions in hydrogeology and groundwater modeling, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton
25.
Zurück zum Zitat Raju PSRN, Pandian NS, Nagaraj TS (1995) Analysis and estimation of coefficient of consolidation. Geotech Test J 18(2):252–258CrossRef Raju PSRN, Pandian NS, Nagaraj TS (1995) Analysis and estimation of coefficient of consolidation. Geotech Test J 18(2):252–258CrossRef
26.
Zurück zum Zitat Chapuis RP (2012) Predicting the saturated hydraulic conductivity of soils: a review. Bull Eng Geol Environ 71(3):401–434CrossRef Chapuis RP (2012) Predicting the saturated hydraulic conductivity of soils: a review. Bull Eng Geol Environ 71(3):401–434CrossRef
27.
Zurück zum Zitat Taylor DW (2013) Fundamentals of soil mechanics. Literary Licensing LLC, Whitefish Taylor DW (2013) Fundamentals of soil mechanics. Literary Licensing LLC, Whitefish
28.
Zurück zum Zitat Jang JR (1993) anfis: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 33(3):2889–2892 Jang JR (1993) anfis: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 33(3):2889–2892
29.
Zurück zum Zitat Najjar YM, Basheer IA (1996) Utilizing computational neural networks for evaluating the permeability of compacted clay liners. Geotech Geol Eng 14(3):193–212 Najjar YM, Basheer IA (1996) Utilizing computational neural networks for evaluating the permeability of compacted clay liners. Geotech Geol Eng 14(3):193–212
30.
Zurück zum Zitat Boroumand A, Baziar MH (2005) Determinations of compacted clay permeability by artificial neural networks. Proceedings of the ninth international water technology conference, Sharm El-Sheikh, March 17–20, pp 515–526 Boroumand A, Baziar MH (2005) Determinations of compacted clay permeability by artificial neural networks. Proceedings of the ninth international water technology conference, Sharm El-Sheikh, March 17–20, pp 515–526
31.
Zurück zum Zitat Sinha SK, Wang MC (2008) Artificial neural network prediction models for soil compaction and permeability. Geotech Geol Eng 26:47–64CrossRef Sinha SK, Wang MC (2008) Artificial neural network prediction models for soil compaction and permeability. Geotech Geol Eng 26:47–64CrossRef
32.
Zurück zum Zitat Yilmaz I, Marschalko M, Bednarik M, Kaynar O, Fojtova L (2012) Neural computing models for prediction of permeability coefficient of coarse-grained soils. Neural Comput Appl 21:957–968CrossRef Yilmaz I, Marschalko M, Bednarik M, Kaynar O, Fojtova L (2012) Neural computing models for prediction of permeability coefficient of coarse-grained soils. Neural Comput Appl 21:957–968CrossRef
33.
Zurück zum Zitat Arshad RR, Sayyad G, Mosaddeghi M, Gharabaghi B (2013) Predicting saturated hydraulic conductivity by artificial intelligence and regression models. ISRN Soil Sci, Article ID 308159, 8 Arshad RR, Sayyad G, Mosaddeghi M, Gharabaghi B (2013) Predicting saturated hydraulic conductivity by artificial intelligence and regression models. ISRN Soil Sci, Article ID 308159, 8
34.
Zurück zum Zitat Zanganeh M, Mousavi SJ, Etemad Shahidi AF (2009) A hybrid genetic algorithm-adaptive network-based fuzzy inference system in prediction of wave parameters. Eng Appl Artif Intell 22(8):1194–1202CrossRef Zanganeh M, Mousavi SJ, Etemad Shahidi AF (2009) A hybrid genetic algorithm-adaptive network-based fuzzy inference system in prediction of wave parameters. Eng Appl Artif Intell 22(8):1194–1202CrossRef
35.
Zurück zum Zitat Chiu SL (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2(3):267–278 Chiu SL (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2(3):267–278
36.
Zurück zum Zitat Mousavi SJ, Ponnambalam K, Karray F (2007) Inferring operating rules for reservoir operations using fuzzy regression and ANFIS. Fuzzy Sets Syst 158(10):1064–1082MathSciNetCrossRefMATH Mousavi SJ, Ponnambalam K, Karray F (2007) Inferring operating rules for reservoir operations using fuzzy regression and ANFIS. Fuzzy Sets Syst 158(10):1064–1082MathSciNetCrossRefMATH
37.
Zurück zum Zitat Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers, BerlinCrossRefMATH Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers, BerlinCrossRefMATH
38.
Zurück zum Zitat Demuth H, Beale M, Hagan M (2008) Neural network \({\rm toolbox}^{{\rm TM}}\) 6, user’s guide. The MathWorks, Inc, Natick Demuth H, Beale M, Hagan M (2008) Neural network \({\rm toolbox}^{{\rm TM}}\) 6, user’s guide. The MathWorks, Inc, Natick
39.
40.
Zurück zum Zitat Hornik KM, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximations. Neural Netw 2(5):359–366CrossRef Hornik KM, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximations. Neural Netw 2(5):359–366CrossRef
41.
Zurück zum Zitat Hecht-Nielson R (1987) Kolmogorov’s mapping neural network existence theorem. 1st IEEE ICNN, 3, San Diago Hecht-Nielson R (1987) Kolmogorov’s mapping neural network existence theorem. 1st IEEE ICNN, 3, San Diago
42.
Zurück zum Zitat Kůrková V (1992) Kolmogorov’s theorem and multilayer neural networks. Neural Netw 5(3):501–506CrossRef Kůrková V (1992) Kolmogorov’s theorem and multilayer neural networks. Neural Netw 5(3):501–506CrossRef
Metadaten
Titel
Adaptive Network-Based Fuzzy Inference Systems Coupled with Genetic Algorithms for Predicting Soil Permeability Coefficient
verfasst von
Hadi Ganjidoost
S. Jamshid Mousavi
Abbas Soroush
Publikationsdatum
01.08.2016
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 1/2016
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-015-9479-5

Weitere Artikel der Ausgabe 1/2016

Neural Processing Letters 1/2016 Zur Ausgabe

OriginalPaper

Computation by Time

Neuer Inhalt