Skip to main content
Erschienen in:

03.04.2023

Adaptive planning of human–robot collaborative disassembly for end-of-life lithium-ion batteries based on digital twin

verfasst von: Weibin Qu, Jie Li, Rong Zhang, Shimin Liu, Jinsong Bao

Erschienen in: Journal of Intelligent Manufacturing | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Increasing numbers of lithium-ion batteries for new energy vehicles that have been retired pose a threat to the ecological environment, making their disassembly and recycling methods a research priority. Due to the variation in models and service procedures, numerous lithium-ion battery brands, models, and retirement states exist. This uncertainty contributes to the complexity of the disassembly procedure, which calls for a great deal of adaptability. Human–Robot Collaboration Disassembly (HRCD) mode maximizes the advantages of both humans and robots, progressively replacing single-person disassembly and single-machine disassembly to become the standard method for disassembling end-of-life lithium-ion batteries (LIBs). However, the HRCD process has more dimensions and uncertainties. In light of the obstacles above, this paper developed an HRCD environment with virtual and real interaction functions, which recommended real-time cooperation strategies in the dynamic production process and significantly enhanced the flexibility of disassembly operations. Based on the genetic algorithm (GA), the Disassembly Sequence Planning (DSP) is developed for waste LIBs in the source domain and imported into the knowledge base. Then, the rapid adaptive generation of HRCD task strategy for LIBs is generated, utilizing the transfer learning approach in the target domain. Two types of end-of-life automobile LIBs are analyzed as case study products. The results demonstrated that the proposed method could plan an effective action sequence, effectively reduce the design time of the target domain disassembly strategy, and enhance the flexibility of HRCD.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bänziger, T., Kunz, A., & Wegener, K. (2020). Optimizing human–robot task allocation using a simulation tool based on standardized work descriptions. Journal of Intelligent Manufacturing, 31(7), 1635–1648.CrossRef Bänziger, T., Kunz, A., & Wegener, K. (2020). Optimizing human–robot task allocation using a simulation tool based on standardized work descriptions. Journal of Intelligent Manufacturing, 31(7), 1635–1648.CrossRef
Zurück zum Zitat Bilberg, A., & Malik, A. A. (2019). Digital twin driven human–robot collaborative assembly. CIRP Annals, 68(1), 499–502.CrossRef Bilberg, A., & Malik, A. A. (2019). Digital twin driven human–robot collaborative assembly. CIRP Annals, 68(1), 499–502.CrossRef
Zurück zum Zitat Che, Z. H., Chiang, T. A., & Lin, T. T. (2021). A multi-objective genetic algorithm for assembly planning and supplier selection with capacity constraints. Applied Soft Computing, 101, 107030.CrossRef Che, Z. H., Chiang, T. A., & Lin, T. T. (2021). A multi-objective genetic algorithm for assembly planning and supplier selection with capacity constraints. Applied Soft Computing, 101, 107030.CrossRef
Zurück zum Zitat Chhim, P., Chinnam, R. B., & Sadawi, N. (2019). Product design and manufacturing process based ontology for manufacturing knowledge reuse. Journal of Intelligent Manufacturing, 30(2), 905–916.CrossRef Chhim, P., Chinnam, R. B., & Sadawi, N. (2019). Product design and manufacturing process based ontology for manufacturing knowledge reuse. Journal of Intelligent Manufacturing, 30(2), 905–916.CrossRef
Zurück zum Zitat Ge, W., & Yu, Y. (2017). Borrowing treasures from the wealthy: Deep transfer learning through selective joint fine-tuning. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1086–1095). Ge, W., & Yu, Y. (2017). Borrowing treasures from the wealthy: Deep transfer learning through selective joint fine-tuning. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1086–1095).
Zurück zum Zitat Grieves, M. (2014). Digital twin: Manufacturing excellence through virtual factory replication. White Paper, 1(2014), 1–7. Grieves, M. (2014). Digital twin: Manufacturing excellence through virtual factory replication. White Paper, 1(2014), 1–7.
Zurück zum Zitat Guo, M. H., Cai, J. X., Liu, Z. N., Mu, T. J., Martin, R. R., & Hu, S. M. (2021). Pct: Point cloud transformer. Computational Visual Media, 7(2), 187–199.CrossRef Guo, M. H., Cai, J. X., Liu, Z. N., Mu, T. J., Martin, R. R., & Hu, S. M. (2021). Pct: Point cloud transformer. Computational Visual Media, 7(2), 187–199.CrossRef
Zurück zum Zitat Hu, H., Li, Z., Qin, S., & Ma, L. (2021b). Construction of feature tensor descriptor and self-similarity analysis for 3d point cloud models. Journal of Computer-Aided Design & Computer Graphics, 33(4), 590–600.CrossRef Hu, H., Li, Z., Qin, S., & Ma, L. (2021b). Construction of feature tensor descriptor and self-similarity analysis for 3d point cloud models. Journal of Computer-Aided Design & Computer Graphics, 33(4), 590–600.CrossRef
Zurück zum Zitat Hu, Y., Wang, Y., Hu, K., & Li, W. (2021a). Adaptive obstacle avoidance in path planning of collaborative robots for dynamic manufacturing. Journal of Intelligent Manufacturing, 1, 1–19. Hu, Y., Wang, Y., Hu, K., & Li, W. (2021a). Adaptive obstacle avoidance in path planning of collaborative robots for dynamic manufacturing. Journal of Intelligent Manufacturing, 1, 1–19.
Zurück zum Zitat Huang, J., Pham, D. T., Li, R., Qu, M., Wang, Y., Kerin, M., ... & Zhou, Z. (2021). An experimental human-robot collaborative disassembly cell. Computers & Industrial Engineering, 155, 107189. Huang, J., Pham, D. T., Li, R., Qu, M., Wang, Y., Kerin, M., ... & Zhou, Z. (2021). An experimental human-robot collaborative disassembly cell. Computers & Industrial Engineering, 155, 107189.
Zurück zum Zitat Ji, Y., Yang, Y., Shen, H. T., & Harada, T. (2021). View-invariant action recognition via Unsupervised AttentioN Transfer (UANT). Pattern Recognition, 113, 107807.CrossRef Ji, Y., Yang, Y., Shen, H. T., & Harada, T. (2021). View-invariant action recognition via Unsupervised AttentioN Transfer (UANT). Pattern Recognition, 113, 107807.CrossRef
Zurück zum Zitat Keselman, L., Iselin Woodfill, J., Grunnet-Jepsen, A., & Bhowmik, A. (2017). Intel realsense stereoscopic depth cameras. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops (pp. 1–10). Keselman, L., Iselin Woodfill, J., Grunnet-Jepsen, A., & Bhowmik, A. (2017). Intel realsense stereoscopic depth cameras. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops (pp. 1–10).
Zurück zum Zitat Lander, L., Cleaver, T., Rajaeifar, M. A., Nguyen-Tien, V., Elliott, R. J., Heidrich, O., ... & Offer, G. (2021). Financial viability of electric vehicle lithium-ion battery recycling. Iscience, 24(7), 102787. Lander, L., Cleaver, T., Rajaeifar, M. A., Nguyen-Tien, V., Elliott, R. J., Heidrich, O., ... & Offer, G. (2021). Financial viability of electric vehicle lithium-ion battery recycling. Iscience, 24(7), 102787.
Zurück zum Zitat Laradji, I. H., & Babanezhad, R. (2020). M-ADDA: Unsupervised domain adaptation with deep metric learning. In Domain adaptation for visual understanding (pp. 17–31). Springer, Cham. Laradji, I. H., & Babanezhad, R. (2020). M-ADDA: Unsupervised domain adaptation with deep metric learning. In Domain adaptation for visual understanding (pp. 17–31). Springer, Cham.
Zurück zum Zitat Lee, M. L., Behdad, S., Liang, X., & Zheng, M. (2020, July). Disassembly sequence planning considering human-robot collaboration. In 2020 American Control Conference (ACC) (pp. 2438–2443). IEEE. Lee, M. L., Behdad, S., Liang, X., & Zheng, M. (2020, July). Disassembly sequence planning considering human-robot collaboration. In 2020 American Control Conference (ACC) (pp. 2438–2443). IEEE.
Zurück zum Zitat Lee, M. L., Behdad, S., Liang, X., & Zheng, M. (2022). Task allocation and planning for product disassembly with human–robot collaboration. Robotics and Computer-Integrated Manufacturing, 76, 102306.CrossRef Lee, M. L., Behdad, S., Liang, X., & Zheng, M. (2022). Task allocation and planning for product disassembly with human–robot collaboration. Robotics and Computer-Integrated Manufacturing, 76, 102306.CrossRef
Zurück zum Zitat Liu, S., Bao, J., & Zheng, P. (2023). A review of digital twin-driven machining: From digitization to intellectualization. In Journal of Manufacturing Systems, 67, 361–378.CrossRef Liu, S., Bao, J., & Zheng, P. (2023). A review of digital twin-driven machining: From digitization to intellectualization. In Journal of Manufacturing Systems, 67, 361–378.CrossRef
Zurück zum Zitat Liu, S., Lu, Y., Zheng, P., Shen, H., & Bao, J. (2022a). Adaptive reconstruction of digital twins for machining systems: A transfer learning approach. Robotics and Computer-Integrated Manufacturing, 78, 102390.CrossRef Liu, S., Lu, Y., Zheng, P., Shen, H., & Bao, J. (2022a). Adaptive reconstruction of digital twins for machining systems: A transfer learning approach. Robotics and Computer-Integrated Manufacturing, 78, 102390.CrossRef
Zurück zum Zitat Liu, S., Sun, Y., Zheng, P., Lu, Y., & Bao, J. (2022b). Establishing a reliable mechanism model of the digital twin machining system: An adaptive evaluation network approach. Journal of Manufacturing Systems, 62, 390–401.CrossRef Liu, S., Sun, Y., Zheng, P., Lu, Y., & Bao, J. (2022b). Establishing a reliable mechanism model of the digital twin machining system: An adaptive evaluation network approach. Journal of Manufacturing Systems, 62, 390–401.CrossRef
Zurück zum Zitat Lv, Q., Zhang, R., Sun, X., Lu, Y., & Bao, J. (2021). A digital twin-driven human-robot collaborative assembly approach in the wake of COVID-19. Journal of Manufacturing Systems, 60, 837–851.CrossRef Lv, Q., Zhang, R., Sun, X., Lu, Y., & Bao, J. (2021). A digital twin-driven human-robot collaborative assembly approach in the wake of COVID-19. Journal of Manufacturing Systems, 60, 837–851.CrossRef
Zurück zum Zitat Odenthal, B., Mayer, M. P., Kabuß, W., Kausch, B., & Schlick, C. M. (2011, July). An empirical study of disassembling using an augmented vision system. In International Conference on Digital Human Modeling (pp. 399–408). Springer, Berlin. Odenthal, B., Mayer, M. P., Kabuß, W., Kausch, B., & Schlick, C. M. (2011, July). An empirical study of disassembling using an augmented vision system. In International Conference on Digital Human Modeling (pp. 399–408). Springer, Berlin.
Zurück zum Zitat Ordoñez, J., Gago, E. J., & Girard, A. (2016). Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renewable and Sustainable Energy Reviews, 60, 195–205.CrossRef Ordoñez, J., Gago, E. J., & Girard, A. (2016). Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renewable and Sustainable Energy Reviews, 60, 195–205.CrossRef
Zurück zum Zitat Qian, J., Zhang, Z., Shi, L., & Song, D. (2021). An assembly timing planning method based on knowledge and mixed integer linear programming. Journal of Intelligent Manufacturing, 1, 1–25. Qian, J., Zhang, Z., Shi, L., & Song, D. (2021). An assembly timing planning method based on knowledge and mixed integer linear programming. Journal of Intelligent Manufacturing, 1, 1–25.
Zurück zum Zitat Raatz, A., Blankemeyer, S., Recker, T., Pischke, D., & Nyhuis, P. (2020). Task scheduling method for HRC workplaces based on capabilities and execution time assumptions for robots. CIRP Annals, 69(1), 13–16.CrossRef Raatz, A., Blankemeyer, S., Recker, T., Pischke, D., & Nyhuis, P. (2020). Task scheduling method for HRC workplaces based on capabilities and execution time assumptions for robots. CIRP Annals, 69(1), 13–16.CrossRef
Zurück zum Zitat Ranz, F., Hummel, V., & Sihn, W. (2017). Capability-based task allocation in human-robot collaboration. Procedia Manufacturing, 9, 182–189.CrossRef Ranz, F., Hummel, V., & Sihn, W. (2017). Capability-based task allocation in human-robot collaboration. Procedia Manufacturing, 9, 182–189.CrossRef
Zurück zum Zitat Rastegarpanah, A., Gonzalez, H. C., & Stolkin, R. (2021). Semi-autonomous behaviour tree-based framework for sorting electric vehicle batteries components. Robotics, 10(2), 82.CrossRef Rastegarpanah, A., Gonzalez, H. C., & Stolkin, R. (2021). Semi-autonomous behaviour tree-based framework for sorting electric vehicle batteries components. Robotics, 10(2), 82.CrossRef
Zurück zum Zitat Raziei, Z., & Moghaddam, M. (2021). Adaptable automation with modular deep reinforcement learning and policy transfer. Engineering Applications of Artificial Intelligence, 103, 104296.CrossRef Raziei, Z., & Moghaddam, M. (2021). Adaptable automation with modular deep reinforcement learning and policy transfer. Engineering Applications of Artificial Intelligence, 103, 104296.CrossRef
Zurück zum Zitat Ren, M., Zhang, Q., & Zhang, J. (2019). An introductory survey of probability density function control. Systems Science & Control Engineering, 7(1), 158–170.CrossRef Ren, M., Zhang, Q., & Zhang, J. (2019). An introductory survey of probability density function control. Systems Science & Control Engineering, 7(1), 158–170.CrossRef
Zurück zum Zitat Rodríguez, I., Nottensteiner, K., Leidner, D., Durner, M., Stulp, F., & Albu-Schäffer, A. (2020). Pattern recognition for knowledge transfer in robotic assembly sequence planning. IEEE Robotics and Automation Letters, 5(2), 3666–3673.CrossRef Rodríguez, I., Nottensteiner, K., Leidner, D., Durner, M., Stulp, F., & Albu-Schäffer, A. (2020). Pattern recognition for knowledge transfer in robotic assembly sequence planning. IEEE Robotics and Automation Letters, 5(2), 3666–3673.CrossRef
Zurück zum Zitat Singh, A., Yu, A., Yang, J., Zhang, J., Kumar, A., & Levine, S. (2020). Cog: Connecting new skills to past experience with offline reinforcement learning. arXiv preprint arXiv:2010.14500. Singh, A., Yu, A., Yang, J., Zhang, J., Kumar, A., & Levine, S. (2020). Cog: Connecting new skills to past experience with offline reinforcement learning. arXiv preprint arXiv:​2010.​14500.
Zurück zum Zitat Sun, X., Zhang, R., Liu, S., Lv, Q., Bao, J., & Li, J. (2022). A digital twin-driven human–robot collaborative assembly-commissioning method for complex products. The International Journal of Advanced Manufacturing Technology, 118(9), 3389–3402.CrossRef Sun, X., Zhang, R., Liu, S., Lv, Q., Bao, J., & Li, J. (2022). A digital twin-driven human–robot collaborative assembly-commissioning method for complex products. The International Journal of Advanced Manufacturing Technology, 118(9), 3389–3402.CrossRef
Zurück zum Zitat Tao, F., Zhang, M., Liu, Y., & Nee, A. Y. (2018). Digital twin driven prognostics and health management for complex equipment. CIRP Annals, 67(1), 169–172.CrossRef Tao, F., Zhang, M., Liu, Y., & Nee, A. Y. (2018). Digital twin driven prognostics and health management for complex equipment. CIRP Annals, 67(1), 169–172.CrossRef
Zurück zum Zitat Uglanov, A., Kartashev, K., Campean, F., Doikin, A., Abdullatif, A., Angiolini, E., ... & Zhang, Q. (2022). Driver Behaviour Modelling: Travel Prediction Using Probability Density Function. In UK Workshop on Computational Intelligence (pp. 545–556). Springer, Cham. Uglanov, A., Kartashev, K., Campean, F., Doikin, A., Abdullatif, A., Angiolini, E., ... & Zhang, Q. (2022). Driver Behaviour Modelling: Travel Prediction Using Probability Density Function. In UK Workshop on Computational Intelligence (pp. 545–556). Springer, Cham.
Zurück zum Zitat Vo, A. V., Truong-Hong, L., Laefer, D. F., & Bertolotto, M. (2015). Octree-based region growing for point cloud segmentation. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 88–100.CrossRef Vo, A. V., Truong-Hong, L., Laefer, D. F., & Bertolotto, M. (2015). Octree-based region growing for point cloud segmentation. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 88–100.CrossRef
Zurück zum Zitat Vongbunyong, S., Kara, S., & Pagnucco, M. (2013). Basic behaviour control of the vision-based cognitive robotic disassembly automation. Assembly Automation., 33(1), 38–56.CrossRef Vongbunyong, S., Kara, S., & Pagnucco, M. (2013). Basic behaviour control of the vision-based cognitive robotic disassembly automation. Assembly Automation., 33(1), 38–56.CrossRef
Zurück zum Zitat Vongbunyong, S., Vongseela, P., & Sreerattana-aporn, J. (2017). A process demonstration platform for product disassembly skills transfer. Procedia CIRP, 61, 281–286.CrossRef Vongbunyong, S., Vongseela, P., & Sreerattana-aporn, J. (2017). A process demonstration platform for product disassembly skills transfer. Procedia CIRP, 61, 281–286.CrossRef
Zurück zum Zitat Wu, Z., He, L., Wang, Y., Goh, M., & Ming, X. (2020). Knowledge recommendation for product development using integrated rough set-information entropy correction. Journal of Intelligent Manufacturing, 31(6), 1559–1578.CrossRef Wu, Z., He, L., Wang, Y., Goh, M., & Ming, X. (2020). Knowledge recommendation for product development using integrated rough set-information entropy correction. Journal of Intelligent Manufacturing, 31(6), 1559–1578.CrossRef
Zurück zum Zitat Xu, C., Wang, J., Zhang, J., & Li, X. (2021b). Anomaly detection of power consumption in yarn spinning using transfer learning. Computers & Industrial Engineering, 152, 107015.CrossRef Xu, C., Wang, J., Zhang, J., & Li, X. (2021b). Anomaly detection of power consumption in yarn spinning using transfer learning. Computers & Industrial Engineering, 152, 107015.CrossRef
Zurück zum Zitat Xu, W., Cui, J., Liu, B., Liu, J., Yao, B., & Zhou, Z. (2021a). Human-robot collaborative disassembly line balancing considering the safe strategy in remanufacturing. Journal of Cleaner Production, 324, 129158.CrossRef Xu, W., Cui, J., Liu, B., Liu, J., Yao, B., & Zhou, Z. (2021a). Human-robot collaborative disassembly line balancing considering the safe strategy in remanufacturing. Journal of Cleaner Production, 324, 129158.CrossRef
Zurück zum Zitat Xu, W., Tang, Q., Liu, J., Liu, Z., Zhou, Z., & Pham, D. T. (2020). Disassembly sequence planning using discrete Bees algorithm for human-robot collaboration in remanufacturing. Robotics and Computer-Integrated Manufacturing, 62, 101860.CrossRef Xu, W., Tang, Q., Liu, J., Liu, Z., Zhou, Z., & Pham, D. T. (2020). Disassembly sequence planning using discrete Bees algorithm for human-robot collaboration in remanufacturing. Robotics and Computer-Integrated Manufacturing, 62, 101860.CrossRef
Zurück zum Zitat Yao, B., Zhou, Z., Wang, L., Xu, W., Yan, J., & Liu, Q. (2018). A function block based cyber-physical production system for physical human–robot interaction. Journal of Manufacturing Systems, 48, 12–23.CrossRef Yao, B., Zhou, Z., Wang, L., Xu, W., Yan, J., & Liu, Q. (2018). A function block based cyber-physical production system for physical human–robot interaction. Journal of Manufacturing Systems, 48, 12–23.CrossRef
Zurück zum Zitat Yu, T., Huang, J., & Chang, Q. (2020). Mastering the working sequence in human-robot collaborative assembly based on reinforcement learning. IEEE Access, 8, 163868–163877.CrossRef Yu, T., Huang, J., & Chang, Q. (2020). Mastering the working sequence in human-robot collaborative assembly based on reinforcement learning. IEEE Access, 8, 163868–163877.CrossRef
Zurück zum Zitat Yu, D., Huang, Z., Makuza, B., Guo, X., & Tian, Q. (2021). Pretreatment options for the recycling of spent lithium-ion batteries: A comprehensive review. Minerals Engineering, 173, 107218.CrossRef Yu, D., Huang, Z., Makuza, B., Guo, X., & Tian, Q. (2021). Pretreatment options for the recycling of spent lithium-ion batteries: A comprehensive review. Minerals Engineering, 173, 107218.CrossRef
Zurück zum Zitat Zhang, R., Lv, Q., Li, J., Bao, J., Liu, T., & Liu, S. (2022). A reinforcement learning method for human-robot collaboration in assembly tasks. Robotics and Computer-Integrated Manufacturing, 73, 102227.CrossRef Zhang, R., Lv, Q., Li, J., Bao, J., Liu, T., & Liu, S. (2022). A reinforcement learning method for human-robot collaboration in assembly tasks. Robotics and Computer-Integrated Manufacturing, 73, 102227.CrossRef
Zurück zum Zitat Zhu, L., & Chen, M. (2020). Research on Spent LiFePO4 Electric Vehicle Battery Disposal and Its Life Cycle Inventory Collection in China. International Journal of Environmental Research and Public Health, 17(23), 8828.CrossRef Zhu, L., & Chen, M. (2020). Research on Spent LiFePO4 Electric Vehicle Battery Disposal and Its Life Cycle Inventory Collection in China. International Journal of Environmental Research and Public Health, 17(23), 8828.CrossRef
Zurück zum Zitat Zhu, W., Braun, B., Chiang, L. H., & Romagnoli, J. A. (2021). Investigation of transfer learning for image classification and impact on training sample size. Chemometrics and Intelligent Laboratory Systems, 211, 104269.CrossRef Zhu, W., Braun, B., Chiang, L. H., & Romagnoli, J. A. (2021). Investigation of transfer learning for image classification and impact on training sample size. Chemometrics and Intelligent Laboratory Systems, 211, 104269.CrossRef
Metadaten
Titel
Adaptive planning of human–robot collaborative disassembly for end-of-life lithium-ion batteries based on digital twin
verfasst von
Weibin Qu
Jie Li
Rong Zhang
Shimin Liu
Jinsong Bao
Publikationsdatum
03.04.2023
Verlag
Springer US
Erschienen in
Journal of Intelligent Manufacturing / Ausgabe 5/2024
Print ISSN: 0956-5515
Elektronische ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-023-02081-9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.