Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

22.11.2019 | Methodologies and Application | Ausgabe 13/2020

Soft Computing 13/2020

Adaptive population structure learning in evolutionary multi-objective optimization

Zeitschrift:
Soft Computing > Ausgabe 13/2020
Autoren:
Shuai Wang, Hu Zhang, Yi Zhang, Aimin Zhou
Wichtige Hinweise
Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Some recent research shows that in multi-objective evolutionary algorithms (MOEAs), mating with similar individuals can improve the quality of new solutions and accelerate the convergence of algorithms. Based on the above finding, some clustering-based mating restriction strategies are proposed. However, those clustering algorithms are not suitable for the population with non-convex structures. Therefore, it may fail to detect population structure in different evolutionary stages. To solve this problem, we propose a normalized hypervolume-based mating transformation strategy (NMTS). In NMTS, the population structure is detected by K-nearest-neighbor graph and spectral clustering before and after the mating transformation condition, respectively. And the parent solutions are chosen according to the founded population structure. The proposed algorithm has been applied to a number of test instances with complex Pareto optimal solution sets or Pareto fronts, and compared with some state-of-the-art MOEAs. The results have demonstrated its advantages over other algorithms.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 13/2020

Soft Computing 13/2020 Zur Ausgabe

Premium Partner

    Bildnachweise