Skip to main content

2019 | OriginalPaper | Buchkapitel

2. Adaptive Sampling for Ultra-Low-Power Electrocardiogram (ECG) Readouts

verfasst von : Venkata Rajesh Pamula, Chris Van Hoof, Marian Verhelst

Erschienen in: Analog-and-Algorithm-Assisted Ultra-low Power Biosignal Acquisition Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Adaptive sampling is introduced as an early data rate reduction technique for ultra-low-power electrocardiogram (ECG) readouts in this chapter. The proposed adaptive sampling technique relies on detection of local bandwidth (BW) of the ECG signal and altering the sampling frequency. Compared to other ECG data rate reduction approaches such as discrete wavelet transform (DWT) and compressive sampling (CS), adaptive sampling is shown to introduce less distortion as accessed through percentage root mean square distortion (PRD) for similar compression ratio (CR). Efficient task partitioning between analog and digital domains, from energetics stand point, in realizing the adaptive sampling controller (ASC) is presented. Systematic design approaches are introduced in realizing the ultra-low-power analog ASC that dissipates only 30.6 nW of power and achieving a dynamic range (DR) of 47.2 dB. The implemented ASC chip enables up to 8 × compression of the ECG signal, while completely preserving the morphology of the QRS complexes which is crucial for accurate heart rate (HR) estimation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
5.
Zurück zum Zitat H. Kim, S. Kim, N.V. Helleputte, A. Artes, M. Konijnenburg, J. Huisken, C.V. Hoof, R.F. Yazicioglu, A configurable and low-power mixed signal SoC for portable ECG monitoring applications. IEEE Trans. Biomed. Circuits Syst. 8(2), 257–267 (2014)CrossRef H. Kim, S. Kim, N.V. Helleputte, A. Artes, M. Konijnenburg, J. Huisken, C.V. Hoof, R.F. Yazicioglu, A configurable and low-power mixed signal SoC for portable ECG monitoring applications. IEEE Trans. Biomed. Circuits Syst. 8(2), 257–267 (2014)CrossRef
11.
Zurück zum Zitat H. Kim, R.F. Yazicioglu, T. Torfs, P. Merken, H.-J. Yoo, C.V. Hoof, A low power ECG signal processor for ambulatory arrhythmia monitoring system, in 2010 Symposium on VLSI Circuits (Institute of Electrical and Electronics Engineers (IEEE), Piscataway, 2010) H. Kim, R.F. Yazicioglu, T. Torfs, P. Merken, H.-J. Yoo, C.V. Hoof, A low power ECG signal processor for ambulatory arrhythmia monitoring system, in 2010 Symposium on VLSI Circuits (Institute of Electrical and Electronics Engineers (IEEE), Piscataway, 2010)
14.
Zurück zum Zitat R.F. Yazicioglu, S. Kim, T. Torfs, H. Kim, C. Van Hoof, A 30 μW analog signal processor ASIC for portable biopotential signal monitoring. IEEE J. Solid State Circuits 46(1), 209–223 (2011)CrossRef R.F. Yazicioglu, S. Kim, T. Torfs, H. Kim, C. Van Hoof, A 30 μW analog signal processor ASIC for portable biopotential signal monitoring. IEEE J. Solid State Circuits 46(1), 209–223 (2011)CrossRef
15.
Zurück zum Zitat N.V. Thakor, J.G. Webster, W.J. Tompkins, Estimation of QRS complex power spectra for design of a QRS filter. IEEE Trans. Biomed. Eng. BME-31(11), 702–706 (1984)CrossRef N.V. Thakor, J.G. Webster, W.J. Tompkins, Estimation of QRS complex power spectra for design of a QRS filter. IEEE Trans. Biomed. Eng. BME-31(11), 702–706 (1984)CrossRef
26.
Zurück zum Zitat L. Yan, P. Harpe, V.R. Pamula, M. Osawa, Y. Harada, K. Tamiya, C.V. Hoof, R.F. Yazicioglu, A 680 nA ECG acquisition IC for leadless pacemaker applications. IEEE Trans. Biomed. Circuits Syst. 8(6), 779–786 (2014)CrossRef L. Yan, P. Harpe, V.R. Pamula, M. Osawa, Y. Harada, K. Tamiya, C.V. Hoof, R.F. Yazicioglu, A 680 nA ECG acquisition IC for leadless pacemaker applications. IEEE Trans. Biomed. Circuits Syst. 8(6), 779–786 (2014)CrossRef
29.
Zurück zum Zitat P. Flandrin, Time-Frequency/Time-Scale Analysis, vol. 10 (Academic Press, Cambridge, 1998)MATH P. Flandrin, Time-Frequency/Time-Scale Analysis, vol. 10 (Academic Press, Cambridge, 1998)MATH
30.
Zurück zum Zitat H. Kim, C.V. Hoof, R.F. Yazicioglu, A mixed signal ECG processing platform with an adaptive sampling ADC for portable monitoring applications, in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Aug 2011), pp. 2196–2199 H. Kim, C.V. Hoof, R.F. Yazicioglu, A mixed signal ECG processing platform with an adaptive sampling ADC for portable monitoring applications, in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Aug 2011), pp. 2196–2199
31.
Zurück zum Zitat A.S. Alvarado, J.C. Principe, From compressive to adaptive sampling of neural and ECG recordings, in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (May 2011), pp. 633–636 A.S. Alvarado, J.C. Principe, From compressive to adaptive sampling of neural and ECG recordings, in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (May 2011), pp. 633–636
32.
Zurück zum Zitat B. Gosselin, M. Sawan, Circuits techniques and microsystems assembly for intracortical multichannel ENG recording, in 2009 IEEE Custom Integrated Circuits Conference (Sep 2009), pp. 97–104 B. Gosselin, M. Sawan, Circuits techniques and microsystems assembly for intracortical multichannel ENG recording, in 2009 IEEE Custom Integrated Circuits Conference (Sep 2009), pp. 97–104
33.
Zurück zum Zitat S. Mitra, J. Putzeys, F. Battaglia, C.M. Lopez, M. Welkenhuysen, C. Pennartz, C. van Hoof, R.F. Yazicioglu, 24-channel dual-band wireless neural recorder with activity-dependent power consumption, in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (Feb 2013), pp. 292–293 S. Mitra, J. Putzeys, F. Battaglia, C.M. Lopez, M. Welkenhuysen, C. Pennartz, C. van Hoof, R.F. Yazicioglu, 24-channel dual-band wireless neural recorder with activity-dependent power consumption, in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (Feb 2013), pp. 292–293
34.
Zurück zum Zitat R. Rieger, J. Taylor, An adaptive sampling system for sensor nodes in body area networks. IEEE Trans. Neural Syst. Rehabil. Eng. 17(2), 183–189 (2009)CrossRef R. Rieger, J. Taylor, An adaptive sampling system for sensor nodes in body area networks. IEEE Trans. Neural Syst. Rehabil. Eng. 17(2), 183–189 (2009)CrossRef
35.
Zurück zum Zitat ANSI/AAMI-EC13, American national standards for cardiac monitors, heart rate meters and alarms (2002) ANSI/AAMI-EC13, American national standards for cardiac monitors, heart rate meters and alarms (2002)
38.
Zurück zum Zitat H. Mamaghanian, N. Khaled, D. Atienza, P. Vandergheynst, Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 58(9), 2456–2466 (2011)CrossRef H. Mamaghanian, N. Khaled, D. Atienza, P. Vandergheynst, Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 58(9), 2456–2466 (2011)CrossRef
39.
Zurück zum Zitat S. Feizi, G. Angelopoulos, V.K. Goyal, M. Medard, Backward adaptation for power efficient sampling. IEEE Trans. Signal Process. 62(16), 4327–4338 (2014)MathSciNetCrossRef S. Feizi, G. Angelopoulos, V.K. Goyal, M. Medard, Backward adaptation for power efficient sampling. IEEE Trans. Signal Process. 62(16), 4327–4338 (2014)MathSciNetCrossRef
40.
Zurück zum Zitat V.R. Pamula, M. Verhelst, C. Van Hoof, R.F. Yazicioglu, A 17nA, 47.2 dB dynamic range, adaptive sampling controller for online data rate reduction in low power ECG systems, in Biomedical Circuits and Systems Conference (BioCAS), 2016 IEEE (IEEE, Piscataway, 2016), pp. 272–275 V.R. Pamula, M. Verhelst, C. Van Hoof, R.F. Yazicioglu, A 17nA, 47.2 dB dynamic range, adaptive sampling controller for online data rate reduction in low power ECG systems, in Biomedical Circuits and Systems Conference (BioCAS), 2016 IEEE (IEEE, Piscataway, 2016), pp. 272–275
41.
Zurück zum Zitat T. Redant, J. Daniels, M.S.J. Steyaert, W. Dehaene, Multiple event time-to-digital conversion-based pulse digitization for a 250 MHz pulse radio ranging application. IEEE Trans. Circuits Syst. Regul. Pap. 58(11), 2614–2622 (2011)MathSciNetCrossRef T. Redant, J. Daniels, M.S.J. Steyaert, W. Dehaene, Multiple event time-to-digital conversion-based pulse digitization for a 250 MHz pulse radio ranging application. IEEE Trans. Circuits Syst. Regul. Pap. 58(11), 2614–2622 (2011)MathSciNetCrossRef
42.
Zurück zum Zitat W. Thomson, Delay networks having maximally flat frequency characteristics. Proc. IEEE-III Radio Commun. Eng. 96(44), 487–490 (1949)CrossRef W. Thomson, Delay networks having maximally flat frequency characteristics. Proc. IEEE-III Radio Commun. Eng. 96(44), 487–490 (1949)CrossRef
43.
Zurück zum Zitat A. Sedra, P. Brackett, Filter Theory and Design: Active and Passive (Martrix Champaign, Urbana, 1998) A. Sedra, P. Brackett, Filter Theory and Design: Active and Passive (Martrix Champaign, Urbana, 1998)
44.
Zurück zum Zitat A.J. Casson, E. Rodriguez-Villegas, A 60 pW gm C continuous wavelet transform circuit for portable eeg systems. IEEE J. Solid State Circuits 46(6), 1406–1415 (2011)CrossRef A.J. Casson, E. Rodriguez-Villegas, A 60 pW gm C continuous wavelet transform circuit for portable eeg systems. IEEE J. Solid State Circuits 46(6), 1406–1415 (2011)CrossRef
45.
Zurück zum Zitat E. Vittoz, J. Fellrath, CMOS analog integrated circuits based on weak inversion operations. IEEE J. Solid State Circuits 12(3), 224–231 (1977)CrossRef E. Vittoz, J. Fellrath, CMOS analog integrated circuits based on weak inversion operations. IEEE J. Solid State Circuits 12(3), 224–231 (1977)CrossRef
46.
Zurück zum Zitat K. Lasanen, J. Ko, A 1-V analog CMOS front-end for detecting QRS complexes in a cardiac signal. IEEE Trans. Circuits Syst. Regul. Pap. 52(12), 2584–2594 (2005)CrossRef K. Lasanen, J. Ko, A 1-V analog CMOS front-end for detecting QRS complexes in a cardiac signal. IEEE Trans. Circuits Syst. Regul. Pap. 52(12), 2584–2594 (2005)CrossRef
47.
Zurück zum Zitat L. Lentola, A. Mozzi, A. Neviani, A. Baschirotto, A 1-μA front end for pacemaker atrial sensing channels with early sensing capability. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 50(8), 397–403 (2003)CrossRef L. Lentola, A. Mozzi, A. Neviani, A. Baschirotto, A 1-μA front end for pacemaker atrial sensing channels with early sensing capability. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 50(8), 397–403 (2003)CrossRef
48.
Zurück zum Zitat S.-Y. Lee, C.-J. Cheng, Systematic design and modeling of a OTA-C filter for portable ECG detection. IEEE Trans. Biomed. Circuits Syst. 3(1), 53–64 (2009)CrossRef S.-Y. Lee, C.-J. Cheng, Systematic design and modeling of a OTA-C filter for portable ECG detection. IEEE Trans. Biomed. Circuits Syst. 3(1), 53–64 (2009)CrossRef
49.
Zurück zum Zitat R. Sarpeshkar, Ultra Low Power Bioelectronics - Fundamentals, Biomedical Applications and Bio-inspired Systems (Cambridge University Press, New York, 2011) R. Sarpeshkar, Ultra Low Power Bioelectronics - Fundamentals, Biomedical Applications and Bio-inspired Systems (Cambridge University Press, New York, 2011)
50.
Zurück zum Zitat R.Q. Twiss, Nyquist’s and thevenin’s theorems generalized for nonreciprocal linear networks. J. Appl. Phys. 26(5), 599 (1955)MathSciNetCrossRef R.Q. Twiss, Nyquist’s and thevenin’s theorems generalized for nonreciprocal linear networks. J. Appl. Phys. 26(5), 599 (1955)MathSciNetCrossRef
51.
Zurück zum Zitat G. Efthivoulidis, L. Toth, Y. Tsividis, Noise in gm-c filters. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 45(3), 295–302 (1998)CrossRef G. Efthivoulidis, L. Toth, Y. Tsividis, Noise in gm-c filters. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 45(3), 295–302 (1998)CrossRef
52.
Zurück zum Zitat D. Gangopadhyay, E.G. Allstot, A.M.R. Dixon, K. Natarajan, S. Gupta, D.J. Allstot, Compressed sensing analog front-end for bio-sensor applications. IEEE J. Solid State Circuits 49(2), 426–438 (2014)CrossRef D. Gangopadhyay, E.G. Allstot, A.M.R. Dixon, K. Natarajan, S. Gupta, D.J. Allstot, Compressed sensing analog front-end for bio-sensor applications. IEEE J. Solid State Circuits 49(2), 426–438 (2014)CrossRef
53.
Zurück zum Zitat Y. Li, D. Zhao, W.A. Serdijn, A sub-microwatt asynchronous level-crossing ADC for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 7(2), 149–157 (2013)CrossRef Y. Li, D. Zhao, W.A. Serdijn, A sub-microwatt asynchronous level-crossing ADC for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 7(2), 149–157 (2013)CrossRef
54.
Zurück zum Zitat S.-L. Chen, J.-G. Wang, VLSI implementation of low-power cost-efficient lossless ECG encoder design for wireless healthcare monitoring application. Electron. Lett. 49(2), 91–93 (2013)CrossRef S.-L. Chen, J.-G. Wang, VLSI implementation of low-power cost-efficient lossless ECG encoder design for wireless healthcare monitoring application. Electron. Lett. 49(2), 91–93 (2013)CrossRef
Metadaten
Titel
Adaptive Sampling for Ultra-Low-Power Electrocardiogram (ECG) Readouts
verfasst von
Venkata Rajesh Pamula
Chris Van Hoof
Marian Verhelst
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-05870-8_2

Neuer Inhalt