Skip to main content

2017 | OriginalPaper | Buchkapitel

Additive Manufacturing: A Trans-disciplinary Experience

verfasst von : Paul Witherell, Yan Lu, Al Jones

Erschienen in: Transdisciplinary Perspectives on Complex Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Objective and Abstract

Objective

Additive Manufacturing (AM) has intrigued the minds of many. The artist can create truly unique designs. The production engineer has a completely new way of making parts. The warfighter can repair or replace equipment on the battlefield. Moreover, any curious person can build trinket and toys at home. As such, the systems challenges facing AM users are not restricted to experts from one domain or one discipline, but are challenges faced by all. This chapter serves to review these transdisciplinary challenges and to discuss opportunities associated with (AM) technologies. The chapter also explores the unique systems challenges created by the widespread adoption of those technologies.

Abstract

As products have become increasingly complex, traditional manufacturing has progressed from an intradisciplinary activity to a multidisciplinary activity to an interdisciplinary activity. The emergence of additive manufacturing is moving manufacturing quickly to a trans-disciplinary activity. Furthermore, the availability of inexpensive AM machines has spawned the maker movement, which has empowered the general public with the ability to design and manufacture a tremendous variety of products. In other words, the public can not only interact with, but also embrace, these various disciplines. As a result, AM is widely considered to be a disruptive manufacturing technology. More importantly, AM is transforming how we understand the manufacture of a product.
Traditional manufacturing has long permitted supply chain partners to operate in isolation: with designers, material suppliers, and manufactures often able to function independently towards the singular goal of creating a product. In AM, however, design, materials, and processes can no longer be segregated. Systems approaches are inherently necessary for the successful creation of a part. The manufacture of design features is no longer restricted by parametric representations. Material properties can be digitally manufactured. To take advantage of these advanced manufacturing options, large amounts of data must be captured, stored, and systematically deployed. The users of this data may range from engineers, to warfighters, to the general public. For this reason, careful consideration must be put into how information is structured, shared, accessed.
This chapter will review the detailed knowledge required from different disciplines to successfully manufacture a product using AM technologies. We will discuss emerging opportunities, from the manufacture of assemblies to the printing of electronics. We will explore the trans-disciplinary nature of additive manufacturing. We discuss how additive technologies have transcended the reach of traditional manufacturing and brought design and manufacture directly to the consumer. Finally, we will explore information barriers in additive manufacturing, and discuss how systems applications can help open new doors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bourell, D. L., Leu, M. C., & Rosen, D. W. (2009). Roadmap for additive manufacturing: Identifying the future of freeform processing. Austin: The University of Texas. Bourell, D. L., Leu, M. C., & Rosen, D. W. (2009). Roadmap for additive manufacturing: Identifying the future of freeform processing. Austin: The University of Texas.
2.
Zurück zum Zitat Lipson, H., & Kurman, M. (2013). Fabricated: The new world of 3D printing. Indianapolis, IN: Wiley. Lipson, H., & Kurman, M. (2013). Fabricated: The new world of 3D printing. Indianapolis, IN: Wiley.
3.
Zurück zum Zitat International Organization for Standardization, ASTM International. (2015). ISO/ASTM 52900:2015 Additive manufacturing—General principles—Terminology. International Organization for Standardization, ASTM International. (2015). ISO/ASTM 52900:2015 Additive manufacturing—General principles—Terminology.
4.
Zurück zum Zitat Lackner, K. S., & Wendt, C. H. (1995). Exponential growth of large self-reproducing machine systems. Mathematical and Computer Modelling, 21(10), 55–81.CrossRef Lackner, K. S., & Wendt, C. H. (1995). Exponential growth of large self-reproducing machine systems. Mathematical and Computer Modelling, 21(10), 55–81.CrossRef
5.
Zurück zum Zitat Bass, T. (1995). Robot, build thyself. Discover. Bass, T. (1995). Robot, build thyself. Discover.
6.
Zurück zum Zitat Sells, E., Smith, Z., Bailard, S., et al. (2009). RepRap: The replicating rapid prototyper: Maximizing customizability by breeding the means of production. In F. T. Piller & M. M. Tseng (Eds.), Handbook of research in mass customization and personalization. New Jersey: World Scientific. Sells, E., Smith, Z., Bailard, S., et al. (2009). RepRap: The replicating rapid prototyper: Maximizing customizability by breeding the means of production. In F. T. Piller & M. M. Tseng (Eds.), Handbook of research in mass customization and personalization. New Jersey: World Scientific.
7.
Zurück zum Zitat Economist. (2012). The new maker rules. Economist Newspaper. Economist. (2012). The new maker rules. Economist Newspaper.
8.
Zurück zum Zitat Horn, T. J., & Harrysson, O. L. (2012). Overview of current additive manufacturing technologies and selected applications. Science Progress, 95(3), 255–282.CrossRef Horn, T. J., & Harrysson, O. L. (2012). Overview of current additive manufacturing technologies and selected applications. Science Progress, 95(3), 255–282.CrossRef
9.
Zurück zum Zitat Ford, S. L. (2014). Additive manufacturing technology: Potential implications for US manufacturing competitiveness. Journal of International Commerce and Economics. Ford, S. L. (2014). Additive manufacturing technology: Potential implications for US manufacturing competitiveness. Journal of International Commerce and Economics.
10.
Zurück zum Zitat Markillie, P. (2012). A third industrial revolution: Special report manufacturing and innovation. Economist Newspaper. Markillie, P. (2012). A third industrial revolution: Special report manufacturing and innovation. Economist Newspaper.
11.
Zurück zum Zitat Friedman, T. L. (2013). When complexity is free. The New York Times. Friedman, T. L. (2013). When complexity is free. The New York Times.
12.
Zurück zum Zitat Gibson, I., Rosen, D. W., & Stucker, B. (2010). Additive manufacturing technologies. New York: Springer.CrossRef Gibson, I., Rosen, D. W., & Stucker, B. (2010). Additive manufacturing technologies. New York: Springer.CrossRef
14.
Zurück zum Zitat Frazier, W. (2010, August). Digital manufacturing of metallic components: Vision and roadmap. Solid Free Form Fabrication Proceedings, Austin, TX, pp. 9–11. Frazier, W. (2010, August). Digital manufacturing of metallic components: Vision and roadmap. Solid Free Form Fabrication Proceedings, Austin, TX, pp. 9–11.
15.
Zurück zum Zitat Hadorn, G. H., Hoffmann-Riem, H., Biber-Klemm, S., Grossenbacher-Mansuy, W., et al. (2008). Handbook of transdisciplinary research. New York: Springer.CrossRef Hadorn, G. H., Hoffmann-Riem, H., Biber-Klemm, S., Grossenbacher-Mansuy, W., et al. (2008). Handbook of transdisciplinary research. New York: Springer.CrossRef
16.
Zurück zum Zitat Frazier, W. (2014). Metal additive manufacturing: A review. Journal of Materials Engineering and Performance, 23(6), 1917–1928.CrossRef Frazier, W. (2014). Metal additive manufacturing: A review. Journal of Materials Engineering and Performance, 23(6), 1917–1928.CrossRef
17.
Zurück zum Zitat Raghavan, A., et al. (2013). Heat transfer and fluid flow in additive manufacturing. Journal of Laser Applications, 25(5), 052006.CrossRef Raghavan, A., et al. (2013). Heat transfer and fluid flow in additive manufacturing. Journal of Laser Applications, 25(5), 052006.CrossRef
18.
Zurück zum Zitat Brice, C. A. (2011). Unintended consequences: How qualification constrains innovation. In Proceedings of the 1st World Congress on Integrated Computational Materials Engineering (ICME). Hoboken, NJ: Wiley Brice, C. A. (2011). Unintended consequences: How qualification constrains innovation. In Proceedings of the 1st World Congress on Integrated Computational Materials Engineering (ICME). Hoboken, NJ: Wiley
19.
Zurück zum Zitat Cooke, A., & Slotwinski, J. (2012). Properties of metal powders for additive manufacturing: A review of the state of the art of metal powder property testing. US Department of Commerce, National Institute of Standards and Technology. Cooke, A., & Slotwinski, J. (2012). Properties of metal powders for additive manufacturing: A review of the state of the art of metal powder property testing. US Department of Commerce, National Institute of Standards and Technology.
20.
Zurück zum Zitat Slotwinski, J., & Moylan, S. (2014). Applicability of existing materials testing standards for additive manufacturing materials NISTIR 8005. Gaithersburg, MD: NIST Technical Publications. Slotwinski, J., & Moylan, S. (2014). Applicability of existing materials testing standards for additive manufacturing materials NISTIR 8005. Gaithersburg, MD: NIST Technical Publications.
21.
Zurück zum Zitat Slotwinski, J. A., et al. (2014). Application of physical and chemical characterization techniques to metallic powders. AIP Conference Proceedings, 1581(1), 1184–1190.CrossRef Slotwinski, J. A., et al. (2014). Application of physical and chemical characterization techniques to metallic powders. AIP Conference Proceedings, 1581(1), 1184–1190.CrossRef
22.
Zurück zum Zitat Slotwinski, J., & Moylan, S. (2014). Metals-based additive manufacturing: Metrology needs and standardization efforts. In Proceedings of the 2014 ASPE Spring Topical Meeting—Dimensional Accuracy and Surface Finish in Additive Manufacturing, Berkeley, CA, pp. 11–12. Slotwinski, J., & Moylan, S. (2014). Metals-based additive manufacturing: Metrology needs and standardization efforts. In Proceedings of the 2014 ASPE Spring Topical MeetingDimensional Accuracy and Surface Finish in Additive Manufacturing, Berkeley, CA, pp. 11–12.
23.
Zurück zum Zitat Slotwinski, J. (2014). Additive manufacturing: Overview and NDE challenges. In 40th Annual Review of Progress in Quantitative Nondestructive Evaluation: Incorporating the 10th International Conference on Barkhausen Noise and Micromagnetic Testing, AIP Publishing. Slotwinski, J. (2014). Additive manufacturing: Overview and NDE challenges. In 40th Annual Review of Progress in Quantitative Nondestructive Evaluation: Incorporating the 10th International Conference on Barkhausen Noise and Micromagnetic Testing, AIP Publishing.
24.
Zurück zum Zitat Herderick, E. (2011). Additive manufacturing of metals: A review. Materials Science and Technology, 1413–1425. Herderick, E. (2011). Additive manufacturing of metals: A review. Materials Science and Technology, 1413–1425.
25.
Zurück zum Zitat Kim, D. B., Witherell, P., Lipman, R., et al. (2015). Streamlining the additive manufacturing digital spectrum: A systems approach. Additive Manufacturing, 5, 20–30.CrossRef Kim, D. B., Witherell, P., Lipman, R., et al. (2015). Streamlining the additive manufacturing digital spectrum: A systems approach. Additive Manufacturing, 5, 20–30.CrossRef
26.
Zurück zum Zitat Moylan, S., & Slotwinski, J. (2014). Assessment of guidelines for conducting round robin studies in additive manufacturing. In Proceedings of the 2014 ASPE Spring Topical Meeting—Dimensional Accuracy and Surface Finish in Additive Manufacturing, Berkeley, CA, pp. 82–85. Moylan, S., & Slotwinski, J. (2014). Assessment of guidelines for conducting round robin studies in additive manufacturing. In Proceedings of the 2014 ASPE Spring Topical Meeting—Dimensional Accuracy and Surface Finish in Additive Manufacturing, Berkeley, CA, pp. 82–85.
27.
Zurück zum Zitat Calvert, P. (2001). Inkjet printing for materials and devices. Chemistry of Materials, 13(10), 3299–3305.CrossRef Calvert, P. (2001). Inkjet printing for materials and devices. Chemistry of Materials, 13(10), 3299–3305.CrossRef
28.
Zurück zum Zitat Sun, K., et al. (2013). 3D printing of interdigitated Li‐Ion microbattery architectures. Advanced Materials, 25(33), 4539–4543.CrossRef Sun, K., et al. (2013). 3D printing of interdigitated Li‐Ion microbattery architectures. Advanced Materials, 25(33), 4539–4543.CrossRef
29.
Zurück zum Zitat Gross, B. C., et al. (2014). Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Analytical Chemistry, 86(7), 3240–3253.CrossRef Gross, B. C., et al. (2014). Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Analytical Chemistry, 86(7), 3240–3253.CrossRef
30.
Zurück zum Zitat Vayre, B., Vignat, F., & Villeneuve, F. (2012). Metallic additive manufacturing: State-of-the-art review and prospects. Mechanics and Industry, 13(2), 89–96.CrossRef Vayre, B., Vignat, F., & Villeneuve, F. (2012). Metallic additive manufacturing: State-of-the-art review and prospects. Mechanics and Industry, 13(2), 89–96.CrossRef
31.
Zurück zum Zitat ISO 10303-238. (2007). Industrial automation systems and integration—Product data representation and exchange—Part 238: Application protocol: Application interpreted model for computerized numerical controllers. Geneva: International Organization for Standardization (ISO). ISO 10303-238. (2007). Industrial automation systems and integration—Product data representation and exchange—Part 238: Application protocol: Application interpreted model for computerized numerical controllers. Geneva: International Organization for Standardization (ISO).
32.
Zurück zum Zitat Beuth, J., et al. (2013). Process mapping for qualification across multiple direct metal additive manufacturing processes. In SFF Symposium. Beuth, J., et al. (2013). Process mapping for qualification across multiple direct metal additive manufacturing processes. In SFF Symposium.
33.
Zurück zum Zitat Gockel, J., & Beuth, J. (2013). Understanding Ti-6Al-4V microstructure control in additive manufacturing via process maps. In Solid Freeform Fabrication Proceedings. Gockel, J., & Beuth, J. (2013). Understanding Ti-6Al-4V microstructure control in additive manufacturing via process maps. In Solid Freeform Fabrication Proceedings.
34.
Zurück zum Zitat Soylemez, E., Beuth, J. L., & Taminger, K. (2013). Controlling melt pool dimensions over a wide range of material deposition rates in electron beam additive manufacturing. In Solid Freeform Fabrication Symposium. Solid Freeform Fabrication Proceedings, Proc., Austin, TX, pp. 571–581. Soylemez, E., Beuth, J. L., & Taminger, K. (2013). Controlling melt pool dimensions over a wide range of material deposition rates in electron beam additive manufacturing. In Solid Freeform Fabrication Symposium. Solid Freeform Fabrication Proceedings, Proc., Austin, TX, pp. 571–581.
35.
Zurück zum Zitat Fox, J., & Beuth, J. (2013). Process mapping of transient melt pool response in wire feed e-beam additive manufacturing of Ti-6Al-4V. Solid Freeform Fabrication Symposium, Austin, TX. Fox, J., & Beuth, J. (2013). Process mapping of transient melt pool response in wire feed e-beam additive manufacturing of Ti-6Al-4V. Solid Freeform Fabrication Symposium, Austin, TX.
36.
Zurück zum Zitat Yadoitsev, I. (2009). Selective laser melting—Direct manufacturing of 3D-objects by selective laser melting of metal powders. Germany: Lambert Academic Publishing. Yadoitsev, I. (2009). Selective laser melting—Direct manufacturing of 3D-objects by selective laser melting of metal powders. Germany: Lambert Academic Publishing.
37.
Zurück zum Zitat Strohm, P., et al. (2011). 2.5-controlling laser material processing with real-time algorithms on cellular neural networks. Proceedings OPTO, 2011, 60–65. Strohm, P., et al. (2011). 2.5-controlling laser material processing with real-time algorithms on cellular neural networks. Proceedings OPTO, 2011, 60–65.
38.
Zurück zum Zitat Craeghs, T., Bechmann, F., Berumen, S., et al. (2010). Feedback control of layerwise laser melting using optical sensors. Laser Assisted Net Shape Engineering 6, Proceedings of the Lane 2010, Part 2, 5, 505–514. Craeghs, T., Bechmann, F., Berumen, S., et al. (2010). Feedback control of layerwise laser melting using optical sensors. Laser Assisted Net Shape Engineering 6, Proceedings of the Lane 2010, Part 2, 5, 505–514.
39.
Zurück zum Zitat Witherell, P., et al. (2014). Toward metamodels for composable and reusable additive manufacturing process models. Journal of Manufacturing Science and Engineering, 136(6), 061025.CrossRef Witherell, P., et al. (2014). Toward metamodels for composable and reusable additive manufacturing process models. Journal of Manufacturing Science and Engineering, 136(6), 061025.CrossRef
40.
Zurück zum Zitat Mazumder, J., & Song, L. (2010). Advances in direct metal deposition. In S. Hinduja & L. Li (Eds.), Proceedings of the 36th international MATADOR conference (pp. 447–450). London: Springer.CrossRef Mazumder, J., & Song, L. (2010). Advances in direct metal deposition. In S. Hinduja & L. Li (Eds.), Proceedings of the 36th international MATADOR conference (pp. 447–450). London: Springer.CrossRef
41.
Zurück zum Zitat Song, L., & Mazumder, J. (2011). Feedback control of melt pool temperature during laser cladding process. Control Systems Technology, IEEE Transactions on, 19(6), 1349–1356.CrossRef Song, L., & Mazumder, J. (2011). Feedback control of melt pool temperature during laser cladding process. Control Systems Technology, IEEE Transactions on, 19(6), 1349–1356.CrossRef
42.
Zurück zum Zitat Song, L., et al. (2012). Control of melt pool temperature and deposition height during direct metal deposition process. The International Journal of Advanced Manufacturing Technology, 58(1–4), 247–256.CrossRef Song, L., et al. (2012). Control of melt pool temperature and deposition height during direct metal deposition process. The International Journal of Advanced Manufacturing Technology, 58(1–4), 247–256.CrossRef
43.
Zurück zum Zitat Moylan, S., Slotwinski, J., Cooke, A., et al. (2012). Proposal for a standardized test artifact for additive manufacturing machines and processes. In Proceedings of the 2012 Annual International Solid Freeform Fabrication Symposium. Moylan, S., Slotwinski, J., Cooke, A., et al. (2012). Proposal for a standardized test artifact for additive manufacturing machines and processes. In Proceedings of the 2012 Annual International Solid Freeform Fabrication Symposium.
44.
Zurück zum Zitat Murr, L. E., et al. (2012). Next generation orthopaedic implants by additive manufacturing using electron beam melting. International Journal of Biomaterials, 2012, 14.CrossRef Murr, L. E., et al. (2012). Next generation orthopaedic implants by additive manufacturing using electron beam melting. International Journal of Biomaterials, 2012, 14.CrossRef
45.
Zurück zum Zitat Heinl, P., et al. (2008). Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomaterialia, 4(5), 1536–1544.CrossRef Heinl, P., et al. (2008). Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomaterialia, 4(5), 1536–1544.CrossRef
46.
Zurück zum Zitat Ryan, G., Pandit, A., & Apatsidis, D. P. (2006). Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 27(13), 2651–2670.CrossRef Ryan, G., Pandit, A., & Apatsidis, D. P. (2006). Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 27(13), 2651–2670.CrossRef
48.
Zurück zum Zitat Knight, M. (2014). 3-D printing is revolutionizing surgery. Chicago: Crain’s Chicago Business. Knight, M. (2014). 3-D printing is revolutionizing surgery. Chicago: Crain’s Chicago Business.
49.
Zurück zum Zitat Rengier, F., et al. (2010). 3D printing based on imaging data: Review of medical applications. International Journal of Computer Assisted Radiology and Surgery, 5(4), 335–341.CrossRef Rengier, F., et al. (2010). 3D printing based on imaging data: Review of medical applications. International Journal of Computer Assisted Radiology and Surgery, 5(4), 335–341.CrossRef
50.
Zurück zum Zitat Bibb, R., Eggbeer, D., & Evans, P. (2010). Rapid prototyping technologies in soft tissue facial prosthetics: Current state of the art. Rapid Prototyping Journal, 16(2), 130–137.CrossRef Bibb, R., Eggbeer, D., & Evans, P. (2010). Rapid prototyping technologies in soft tissue facial prosthetics: Current state of the art. Rapid Prototyping Journal, 16(2), 130–137.CrossRef
52.
Zurück zum Zitat Strub, J. R., Rekow, E. D., & Witkowski, S. (2006). Computer-aided design and fabrication of dental restorations: Current systems and future possibilities. The Journal of the American Dental Association, 137(9), 1289–1296.CrossRef Strub, J. R., Rekow, E. D., & Witkowski, S. (2006). Computer-aided design and fabrication of dental restorations: Current systems and future possibilities. The Journal of the American Dental Association, 137(9), 1289–1296.CrossRef
53.
Zurück zum Zitat van Noort, R. (2012). The future of dental devices is digital. Dental Materials, 28(1), 3–12.CrossRef van Noort, R. (2012). The future of dental devices is digital. Dental Materials, 28(1), 3–12.CrossRef
55.
Zurück zum Zitat Melchels, F. P., et al. (2012). Additive manufacturing of tissues and organs. Progress in Polymer Science, 37(8), 1079–1104.CrossRef Melchels, F. P., et al. (2012). Additive manufacturing of tissues and organs. Progress in Polymer Science, 37(8), 1079–1104.CrossRef
56.
Zurück zum Zitat Mironov, V., et al. (2003). Organ printing: Computer-aided jet-based 3D tissue engineering. TRENDS in Biotechnology, 21(4), 157–161.CrossRef Mironov, V., et al. (2003). Organ printing: Computer-aided jet-based 3D tissue engineering. TRENDS in Biotechnology, 21(4), 157–161.CrossRef
57.
Zurück zum Zitat Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology, 32(8), 773–785.CrossRef Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology, 32(8), 773–785.CrossRef
58.
Zurück zum Zitat Cranny, A., et al. (2005). Thick-film force and slip sensors for a prosthetic hand. Sensors and Actuators A: Physical, 123, 162–171.CrossRef Cranny, A., et al. (2005). Thick-film force and slip sensors for a prosthetic hand. Sensors and Actuators A: Physical, 123, 162–171.CrossRef
59.
Zurück zum Zitat Majidi, C. (2014). Soft robotics: A perspective—Current trends and prospects for the future. Soft Robotics, 1(1), 5–11.CrossRef Majidi, C. (2014). Soft robotics: A perspective—Current trends and prospects for the future. Soft Robotics, 1(1), 5–11.CrossRef
61.
Zurück zum Zitat Taylor, A., & Unver, E. (2014). 3D printing-media hype or manufacturing reality: Textiles surface fashion product architecture. Textiles Society Lecture, 17th February 2014. Huddersfield UK: Textile Centre of Excellence. Taylor, A., & Unver, E. (2014). 3D printing-media hype or manufacturing reality: Textiles surface fashion product architecture. Textiles Society Lecture, 17th February 2014. Huddersfield UK: Textile Centre of Excellence.
63.
Zurück zum Zitat McCann, J., & Bryson, D. (2009). Smart clothes and wearable technology. Burlington: Elsevier.CrossRef McCann, J., & Bryson, D. (2009). Smart clothes and wearable technology. Burlington: Elsevier.CrossRef
64.
Zurück zum Zitat Wannarumon, S., & Bohez, E. L. (2004). Rapid prototyping and tooling technology in jewelry CAD. Computer-Aided Design and Applications, 1(1–4), 569–575.CrossRef Wannarumon, S., & Bohez, E. L. (2004). Rapid prototyping and tooling technology in jewelry CAD. Computer-Aided Design and Applications, 1(1–4), 569–575.CrossRef
65.
Zurück zum Zitat Periard, D., Schaal, N., Schaal, M., et al. (2007). Printing food. In Proceedings of the 18th Solid Freeform Fabrication Symposium, Austin, TX. Periard, D., Schaal, N., Schaal, M., et al. (2007). Printing food. In Proceedings of the 18th Solid Freeform Fabrication Symposium, Austin, TX.
66.
Zurück zum Zitat Willett, M. (2014). This is the best 3D food printer we’ve seen yet—And it makes stunning desserts. Business Insider. Willett, M. (2014). This is the best 3D food printer we’ve seen yet—And it makes stunning desserts. Business Insider.
67.
Zurück zum Zitat Birtchnell, T., & Urry, J. (2013). 3D, SF and the future. Futures, 50, 25–34.CrossRef Birtchnell, T., & Urry, J. (2013). 3D, SF and the future. Futures, 50, 25–34.CrossRef
69.
Zurück zum Zitat Wolhers, T. (2013). Wohlers report 2013. Wolhers, T. (2013). Wohlers report 2013.
70.
Zurück zum Zitat Gaereminck, R. (2011). Strategic alliances: Making a difference one warfighter at a time. DTIC Document. Gaereminck, R. (2011). Strategic alliances: Making a difference one warfighter at a time. DTIC Document.
71.
Zurück zum Zitat Zimmerman, B. A., & Allen, E. E., III. (2013). Analysis of the potential impact of additive manufacturing on Army logistics. Monterey, CA: Naval Postgraduate School. Zimmerman, B. A., & Allen, E. E., III. (2013). Analysis of the potential impact of additive manufacturing on Army logistics. Monterey, CA: Naval Postgraduate School.
72.
Zurück zum Zitat Pettus, E. L. (2013). Building a competitive edge with additive manufacturing (Doctoral dissertation). Air War College, Air University. Pettus, E. L. (2013). Building a competitive edge with additive manufacturing (Doctoral dissertation). Air War College, Air University.
76.
Zurück zum Zitat Anderson, C. (2010). The new industrial revolution. Wired Magazine 18, 2. Anderson, C. (2010). The new industrial revolution. Wired Magazine 18, 2.
78.
Zurück zum Zitat Mylopoulos, J., et al. (1990). Telos: Representing knowledge about information systems. ACM Transactions on Information Systems (TOIS), 8(4), 325–362.CrossRef Mylopoulos, J., et al. (1990). Telos: Representing knowledge about information systems. ACM Transactions on Information Systems (TOIS), 8(4), 325–362.CrossRef
79.
Zurück zum Zitat Piateski, G., & Frawley, W. (1991). Knowledge discovery in databases. Menlo Park, CA: MIT Press. Piateski, G., & Frawley, W. (1991). Knowledge discovery in databases. Menlo Park, CA: MIT Press.
80.
Zurück zum Zitat Liu, A. (2004). The laws of cool: Knowledge work and the culture of information (552 pages). University of Chicago Press. ISBN-10: 0226486990 and ISBN-13: 978-0226486994. Liu, A. (2004). The laws of cool: Knowledge work and the culture of information (552 pages). University of Chicago Press. ISBN-10: 0226486990 and ISBN-13: 978-0226486994.
82.
Zurück zum Zitat Johnson, T., et al. (2012). Integrating models and simulations of continuous dynamics into SysML. Journal of Computing and Information Science in Engineering, 12(1), 011002.CrossRef Johnson, T., et al. (2012). Integrating models and simulations of continuous dynamics into SysML. Journal of Computing and Information Science in Engineering, 12(1), 011002.CrossRef
83.
Zurück zum Zitat Spivak, D. I. (2014). Category theory for the sciences. Cambridge, MA: MIT Press. Spivak, D. I. (2014). Category theory for the sciences. Cambridge, MA: MIT Press.
84.
Zurück zum Zitat Witherell, P., Krishnamurty, S., Grosse, I.R., et al. (2008). FIDOE: A framework for intelligent distributed ontologies in Engineering. In 2008 ASME IDETC/CIE Conferences, New York. Witherell, P., Krishnamurty, S., Grosse, I.R., et al. (2008). FIDOE: A framework for intelligent distributed ontologies in Engineering. In 2008 ASME IDETC/CIE Conferences, New York.
85.
Zurück zum Zitat Witherell, P. (2009). Semantic methods for intelligent distributed design environments. Amherst, MA: Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst. Witherell, P. (2009). Semantic methods for intelligent distributed design environments. Amherst, MA: Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst.
86.
Zurück zum Zitat D’Alessio, A., Witherell, P., & Rachuri, S. (2012). Modeling gaps and overlaps of sustainability standards. In D. A. Dornfeld & B. S. Linke (Eds.), Leveraging technology for a sustainable world (pp. 443–448). Berlin: Springer.CrossRef D’Alessio, A., Witherell, P., & Rachuri, S. (2012). Modeling gaps and overlaps of sustainability standards. In D. A. Dornfeld & B. S. Linke (Eds.), Leveraging technology for a sustainable world (pp. 443–448). Berlin: Springer.CrossRef
87.
Zurück zum Zitat Witherell, P., et al. (2010). Improved knowledge management through first-order logic in engineering design ontologies. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 24(2), 245–257.CrossRef Witherell, P., et al. (2010). Improved knowledge management through first-order logic in engineering design ontologies. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 24(2), 245–257.CrossRef
88.
Zurück zum Zitat Williamson, K., Healy, M., & Barker, R. (2001). Industrial applications of software synthesis via category theory—Case studies using Specware. Automated Software Engineering, 8(1), 7–30.CrossRef Williamson, K., Healy, M., & Barker, R. (2001). Industrial applications of software synthesis via category theory—Case studies using Specware. Automated Software Engineering, 8(1), 7–30.CrossRef
89.
Zurück zum Zitat Tse, T. H. (2009). A unifying framework for structured analysis and design models: An approach using initial algebra semantics and category theory (Vol. 11). Cambridge: Cambridge University Press. Tse, T. H. (2009). A unifying framework for structured analysis and design models: An approach using initial algebra semantics and category theory (Vol. 11). Cambridge: Cambridge University Press.
Metadaten
Titel
Additive Manufacturing: A Trans-disciplinary Experience
verfasst von
Paul Witherell
Yan Lu
Al Jones
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-38756-7_6

Premium Partner