Skip to main content
Erschienen in: Shape Memory and Superelasticity 1/2019

27.02.2019 | SPECIAL ISSUE: HTSMA 2018, INVITED PAPER HTSMA

Additive Manufacturing of Ni-Rich NiTiHf20: Manufacturability, Composition, Density, and Transformation Behavior

verfasst von: M. Nematollahi, G. Toker, S. E. Saghaian, J. Salazar, M. Mahtabi, O. Benafan, H. Karaca, M. Elahinia

Erschienen in: Shape Memory and Superelasticity | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, the effects of process parameters on the fabrication of NiTiHf alloys using selective laser melting are studied. Specimens were printed using bidirectional scanning pattern and with various sets of process parameters of laser power (100–250 W), hatch spacing (60–140 µm), and scanning speed (200–1000 mm/s). Cracking and delamination formation, dimensional accuracy, density, and transformation temperatures were examined. Despite the brittle nature of the alloy, fully dense parts have been produced. Laser scanning speed and volumetric energy density were found to be the most influential process parameters on fabricating defect-free samples. It was shown that transformation temperatures are highly dependent on the process parameters. By proper choice of parameters, it is possible to tailor the austenite finish temperature from 100 to 400 °C. The most influential factors on transformation behavior were found to be the laser power and energy density. It is worth noting that these two parameters at higher levels resulted in high process temperatures and therefore a larger level of Ni evaporation. Among the four parameters that constitute the energy density, the hatch spacing does not significantly affect the transformation temperatures. These findings serve as the foundation of developing HTSMA devices with desired geometrical and functional properties.
Literatur
1.
Zurück zum Zitat Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315CrossRef Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315CrossRef
2.
Zurück zum Zitat Mohd J, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRef Mohd J, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRef
3.
Zurück zum Zitat Karaca HE, Acar E, Tobe H, Saghaian SM (2014) NiTiHf-based shape memory alloys. Mater Sci Technol 30(13):1530–1544CrossRef Karaca HE, Acar E, Tobe H, Saghaian SM (2014) NiTiHf-based shape memory alloys. Mater Sci Technol 30(13):1530–1544CrossRef
4.
Zurück zum Zitat Angst DR, Thoma PE, Kao MY (1995) The effect of hafnium content on the transformation temperatures of Ni49Ti51-xHfx. Shape memory alloys. J Phys IV 5(C8):C8–747 Angst DR, Thoma PE, Kao MY (1995) The effect of hafnium content on the transformation temperatures of Ni49Ti51-xHfx. Shape memory alloys. J Phys IV 5(C8):C8–747
5.
Zurück zum Zitat Canadinc D, Trehern W, Ozcan H, Hayrettin C, Karakoc O, Karaman I, Sun F, Chaudhry Z (2017) On the deformation response and cyclic stability of Ni50Ti35Hf15 high temperature shape memory alloy wires. Scr Mater 135:92–96CrossRef Canadinc D, Trehern W, Ozcan H, Hayrettin C, Karakoc O, Karaman I, Sun F, Chaudhry Z (2017) On the deformation response and cyclic stability of Ni50Ti35Hf15 high temperature shape memory alloy wires. Scr Mater 135:92–96CrossRef
6.
Zurück zum Zitat Elahinia M, Shayesteh N, Amerinatanzi A, Saedi S, Toker GP, Karaca H, Bigelow GS, Benafan O (2018) Additive manufacturing of NiTiHf high temperature shape memory alloy. Scr Mater 145:90–94CrossRef Elahinia M, Shayesteh N, Amerinatanzi A, Saedi S, Toker GP, Karaca H, Bigelow GS, Benafan O (2018) Additive manufacturing of NiTiHf high temperature shape memory alloy. Scr Mater 145:90–94CrossRef
7.
Zurück zum Zitat Benafan O, Bigelow GS, Scheiman DA (2018) Transformation behavior in NiTi-20Hf shape memory alloys—transformation temperatures and hardness. Scr Mater 146:251–254CrossRef Benafan O, Bigelow GS, Scheiman DA (2018) Transformation behavior in NiTi-20Hf shape memory alloys—transformation temperatures and hardness. Scr Mater 146:251–254CrossRef
8.
Zurück zum Zitat Coughlin DR, Phillips PJ, Bigelow GS, Garg A, Noebe RD, Mills MJ (2012) Characterization of the microstructure and mechanical properties of a 50.3Ni-29.7Ti-20Hf shape memory alloy. Scr Mater 67(1):112–115CrossRef Coughlin DR, Phillips PJ, Bigelow GS, Garg A, Noebe RD, Mills MJ (2012) Characterization of the microstructure and mechanical properties of a 50.3Ni-29.7Ti-20Hf shape memory alloy. Scr Mater 67(1):112–115CrossRef
9.
Zurück zum Zitat Benafan O, Bigelow GS, Garg A, Noebe RD (2019) Viable low temperature shape memory alloys based on Ni-Ti-Hf formulations. Scr Mater 164:115–120CrossRef Benafan O, Bigelow GS, Garg A, Noebe RD (2019) Viable low temperature shape memory alloys based on Ni-Ti-Hf formulations. Scr Mater 164:115–120CrossRef
10.
Zurück zum Zitat Elahinia M, Hashemi M, Tabesh M, Bhaduri SB (2012) Manufacturing and processing of NiTi implants: a review. Prog Mater Sci 57(5):911–946CrossRef Elahinia M, Hashemi M, Tabesh M, Bhaduri SB (2012) Manufacturing and processing of NiTi implants: a review. Prog Mater Sci 57(5):911–946CrossRef
11.
Zurück zum Zitat Biermann D, Kahleyss F, Krebs E, Upmeier T (2011) A study on micro-machining technology for the machining of NiTi: five-axis micro-milling and micro deep-hole drilling. J Mater Eng Perform 20(4–5):745–751CrossRef Biermann D, Kahleyss F, Krebs E, Upmeier T (2011) A study on micro-machining technology for the machining of NiTi: five-axis micro-milling and micro deep-hole drilling. J Mater Eng Perform 20(4–5):745–751CrossRef
12.
Zurück zum Zitat Wu MH (2002) Fabrication of nitinol materials and components. Mater Sci Forum 394–395:285–292CrossRef Wu MH (2002) Fabrication of nitinol materials and components. Mater Sci Forum 394–395:285–292CrossRef
13.
Zurück zum Zitat Elahinia M, Moghaddam NS, Andani MT, Amerinatanzi A, Bimber BA, Hamilton RF (2016) Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci 83:630–663CrossRef Elahinia M, Moghaddam NS, Andani MT, Amerinatanzi A, Bimber BA, Hamilton RF (2016) Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci 83:630–663CrossRef
14.
Zurück zum Zitat Dadbakhsh S, Speirs M, Kruth JP, Schrooten J, Luyten J, Van Humbeeck J (2014) Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Adv Eng Mater 16(9):1140–1146CrossRef Dadbakhsh S, Speirs M, Kruth JP, Schrooten J, Luyten J, Van Humbeeck J (2014) Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Adv Eng Mater 16(9):1140–1146CrossRef
15.
Zurück zum Zitat Speirs M, Wang X, Van Baelen S, Ahadi A, Dadbakhsh S, Kruth JP, Van Humbeeck J (2016) On the transformation behavior of NiTi shape-memory alloy produced by SLM. Shape Mem Superelast 2(4):310–316CrossRef Speirs M, Wang X, Van Baelen S, Ahadi A, Dadbakhsh S, Kruth JP, Van Humbeeck J (2016) On the transformation behavior of NiTi shape-memory alloy produced by SLM. Shape Mem Superelast 2(4):310–316CrossRef
16.
Zurück zum Zitat Bormann T, Schumacher R, Mertmann M, de Wild M (2012) Tailoring selective laser melting process parameters for NiTi implants. J Mater Eng Perform 21(December):2519–2524CrossRef Bormann T, Schumacher R, Mertmann M, de Wild M (2012) Tailoring selective laser melting process parameters for NiTi implants. J Mater Eng Perform 21(December):2519–2524CrossRef
17.
Zurück zum Zitat Saedi S, Moghaddam NS, Amerinatanzi A, Elahinia M, Karaca HE (2018) On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater 144:552–560CrossRef Saedi S, Moghaddam NS, Amerinatanzi A, Elahinia M, Karaca HE (2018) On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater 144:552–560CrossRef
18.
Zurück zum Zitat Benafan O, Gaydosh DJ (2017) High temperature shape memory alloy Ni50.3Ti29.7Hf20 torque tube actuators. Smart Mater Struct 26(9):095002CrossRef Benafan O, Gaydosh DJ (2017) High temperature shape memory alloy Ni50.3Ti29.7Hf20 torque tube actuators. Smart Mater Struct 26(9):095002CrossRef
19.
Zurück zum Zitat Bigelow GS, Garg A, Padula SA, Gaydosh DJ, Noebe RD (2011) Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ti29.7Hf20alloy. Scr Mater 64(8):725–728CrossRef Bigelow GS, Garg A, Padula SA, Gaydosh DJ, Noebe RD (2011) Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ti29.7Hf20alloy. Scr Mater 64(8):725–728CrossRef
20.
Zurück zum Zitat Haberland C, Elahinia M, Walker J, Meier H (2013) Visions, concepts and strategies for smart nitinol actuators and complex nitinol structures produced by additive manufacturing. In: ASME 2013 conference on smart materials, adaptive structures and intelligent systems, p V001T01A006 Haberland C, Elahinia M, Walker J, Meier H (2013) Visions, concepts and strategies for smart nitinol actuators and complex nitinol structures produced by additive manufacturing. In: ASME 2013 conference on smart materials, adaptive structures and intelligent systems, p V001T01A006
21.
Zurück zum Zitat American Society for Testing and Materials (2004) Standard test method for transformation temperature of nickel-titanium alloys by thermal analysis. American Society for Testing and Materials, vol ASTM F2004, pp 10–13 American Society for Testing and Materials (2004) Standard test method for transformation temperature of nickel-titanium alloys by thermal analysis. American Society for Testing and Materials, vol ASTM F2004, pp 10–13
22.
Zurück zum Zitat Zhang B, Li Y, Bai Q (2017) Defect formation mechanisms in selective laser melting: a review. Chin J Mech Eng 30(3):515–527CrossRef Zhang B, Li Y, Bai Q (2017) Defect formation mechanisms in selective laser melting: a review. Chin J Mech Eng 30(3):515–527CrossRef
23.
Zurück zum Zitat Gong H, Rafi K, Gu H, Starr T, Stucker B (2014) Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes. Addit Manuf 1–4:87–98CrossRef Gong H, Rafi K, Gu H, Starr T, Stucker B (2014) Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes. Addit Manuf 1–4:87–98CrossRef
24.
Zurück zum Zitat Grasso M, Colosimo BM (2017) Process defects and in situ monitoring methods in metal powder bed fusion: a review. Meas Sci Technol 28(4):44005CrossRef Grasso M, Colosimo BM (2017) Process defects and in situ monitoring methods in metal powder bed fusion: a review. Meas Sci Technol 28(4):44005CrossRef
25.
Zurück zum Zitat Speirs M, Dadbakhsh S, Buls S, Kruth JP, Van Humbeeck J, Schrooten J, Luyten J (2013) The effect of SLM parameters on geometrical characteristics of open porous NiTi scaffolds. In: High value manufacturing: advanced research in virtual and rapid prototyping: proceedings of the 6th international conference on advanced research in virtual and rapid prototyping Speirs M, Dadbakhsh S, Buls S, Kruth JP, Van Humbeeck J, Schrooten J, Luyten J (2013) The effect of SLM parameters on geometrical characteristics of open porous NiTi scaffolds. In: High value manufacturing: advanced research in virtual and rapid prototyping: proceedings of the 6th international conference on advanced research in virtual and rapid prototyping
26.
Zurück zum Zitat Walker JM, Haberland C, Andani MT, Karaca HE, Dean D, Elahinia M (2016) Process development and characterization of additively manufactured nickel-titanium shape memory parts. J Intell Mater Syst Struct 27(19):2653–2660CrossRef Walker JM, Haberland C, Andani MT, Karaca HE, Dean D, Elahinia M (2016) Process development and characterization of additively manufactured nickel-titanium shape memory parts. J Intell Mater Syst Struct 27(19):2653–2660CrossRef
27.
Zurück zum Zitat Mahmoudi M, Tapia G, Franco B, Ma J, Arroyave R, Karaman I, Elwany A (2018) On the printability and transformation behavior of nickel-titanium shape memory alloys fabricated using laser powder-bed fusion additive manufacturing. J Manf Process 35(August):672–680CrossRef Mahmoudi M, Tapia G, Franco B, Ma J, Arroyave R, Karaman I, Elwany A (2018) On the printability and transformation behavior of nickel-titanium shape memory alloys fabricated using laser powder-bed fusion additive manufacturing. J Manf Process 35(August):672–680CrossRef
28.
Zurück zum Zitat Haberland C, Elahinia M, Walker J, Meier J, Frenzel J (2013) Additive manufacturing of shape memory devices and pseudoelastic components. In: ASME 2013 conference on smart materials, adaptive structures and intelligent systems, p V001T01A005 Haberland C, Elahinia M, Walker J, Meier J, Frenzel J (2013) Additive manufacturing of shape memory devices and pseudoelastic components. In: ASME 2013 conference on smart materials, adaptive structures and intelligent systems, p V001T01A005
29.
Zurück zum Zitat Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MF, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458CrossRef Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MF, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458CrossRef
30.
Zurück zum Zitat David NAII, Thoma PE, Kao M-Y, Angst DR (1992) High transformation temperature shape memory alloy. Google Patents, 19-May-1992 David NAII, Thoma PE, Kao M-Y, Angst DR (1992) High transformation temperature shape memory alloy. Google Patents, 19-May-1992
31.
Zurück zum Zitat Scipioni U, Wolfer AJ, Matthews MJ, Delplanque JR, Schoenung JM (2017) On the limitations of volumetric energy density as a design parameter for selective laser melting. JMADE 113:331–340 Scipioni U, Wolfer AJ, Matthews MJ, Delplanque JR, Schoenung JM (2017) On the limitations of volumetric energy density as a design parameter for selective laser melting. JMADE 113:331–340
32.
Zurück zum Zitat Rashid R, Masood SH, Ruan D, Palanisamy S, Rashid RAR, Brandt M (2017) Effect of scan strategy on density and metallurgical properties of 17-4PH parts printed by selective laser melting (SLM). J Mater Process Technol 249(February):502–511CrossRef Rashid R, Masood SH, Ruan D, Palanisamy S, Rashid RAR, Brandt M (2017) Effect of scan strategy on density and metallurgical properties of 17-4PH parts printed by selective laser melting (SLM). J Mater Process Technol 249(February):502–511CrossRef
33.
Zurück zum Zitat Gu H, Gong H (2013) Influences of energy density on porosity and microstructure of selective laser melted 17-4PH stainless steel. In: 24th international SFF symposium—an additive manufacturing conference, SFF 2013 Gu H, Gong H (2013) Influences of energy density on porosity and microstructure of selective laser melted 17-4PH stainless steel. In: 24th international SFF symposium—an additive manufacturing conference, SFF 2013
34.
Zurück zum Zitat Li R, Liu J, Shi Y, Wang L (2012) Balling behavior of stainless steel and nickel powder during selective laser melting process. Int J Adv Manuf Tech 59:1025–1035CrossRef Li R, Liu J, Shi Y, Wang L (2012) Balling behavior of stainless steel and nickel powder during selective laser melting process. Int J Adv Manuf Tech 59:1025–1035CrossRef
35.
Zurück zum Zitat Patterson AE, Messimer SL, Farrington PA (2017) Overhanging features and the SLM/DMLS residual stresses problem: review and future research need. Technologies 5(2):15CrossRef Patterson AE, Messimer SL, Farrington PA (2017) Overhanging features and the SLM/DMLS residual stresses problem: review and future research need. Technologies 5(2):15CrossRef
36.
Zurück zum Zitat Saghaian SM, Karaca HE, Tobe H, Pons J, Santamarta R, Chumlyakov YI, Noebe RD (2016) Effects of Ni content on the shape memory properties and microstructure of Ni-rich NiTi-20Hf alloys. Smart Mater Struct 25(9):95029CrossRef Saghaian SM, Karaca HE, Tobe H, Pons J, Santamarta R, Chumlyakov YI, Noebe RD (2016) Effects of Ni content on the shape memory properties and microstructure of Ni-rich NiTi-20Hf alloys. Smart Mater Struct 25(9):95029CrossRef
Metadaten
Titel
Additive Manufacturing of Ni-Rich NiTiHf20: Manufacturability, Composition, Density, and Transformation Behavior
verfasst von
M. Nematollahi
G. Toker
S. E. Saghaian
J. Salazar
M. Mahtabi
O. Benafan
H. Karaca
M. Elahinia
Publikationsdatum
27.02.2019
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 1/2019
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-019-00214-9

Weitere Artikel der Ausgabe 1/2019

Shape Memory and Superelasticity 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.