Skip to main content
Erschienen in: Metallurgist 9-10/2022

01.02.2022

Additive Products from Electroerosion of Cobalt-Chromium Powder

verfasst von: E. V. Ageev, E. V. Ageeva, A. Yu. Altukhov

Erschienen in: Metallurgist | Ausgabe 9-10/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article studies the composition, structure, and properties of electroerosive cobalt-chromium powder, as well as the additive products from it. The use of the obtained experimental data will enable the control of the formation process of the structure and properties of products obtained by means of additive technologies and ensure the technical requirements imposed on them.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Karlsson, A. Snis, H. Engqvist, and J. Lausmaa, “Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti-6Al-4V powder fractions,” J. Mater. Process. Technol., 213 (12), 2109–2118 (2013).CrossRef J. Karlsson, A. Snis, H. Engqvist, and J. Lausmaa, “Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti-6Al-4V powder fractions,” J. Mater. Process. Technol., 213 (12), 2109–2118 (2013).CrossRef
2.
Zurück zum Zitat B. Song, S. Dong, B. Zhang, et al., “Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti–6Al–4V,” Mater. Des., 35, 120–125 (2012).CrossRef B. Song, S. Dong, B. Zhang, et al., “Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti–6Al–4V,” Mater. Des., 35, 120–125 (2012).CrossRef
3.
Zurück zum Zitat B. Song, S. Dong, P. Coddet, et al., “Fabrication and microstructure characterization of selective laser melted FeAl intermetallic parts,” Surf. Coat. Technol., 206, 4704–4709 (2012).CrossRef B. Song, S. Dong, P. Coddet, et al., “Fabrication and microstructure characterization of selective laser melted FeAl intermetallic parts,” Surf. Coat. Technol., 206, 4704–4709 (2012).CrossRef
4.
Zurück zum Zitat Z. Wang, K. Guana, and M. Gaoa, “The microstructure and mechanical properties of deposited IN718 by selective laser melting,” J. Alloys Compd., 513, 518–523 (2012).CrossRef Z. Wang, K. Guana, and M. Gaoa, “The microstructure and mechanical properties of deposited IN718 by selective laser melting,” J. Alloys Compd., 513, 518–523 (2012).CrossRef
5.
Zurück zum Zitat A. Safdar, L.Y. Wei, A. Snis, and Z. Lai, “Evaluation of microstructural development in electron beam melted Ti-6Al-4V,” Mater. Charact., 65, 8–15 (2012).CrossRef A. Safdar, L.Y. Wei, A. Snis, and Z. Lai, “Evaluation of microstructural development in electron beam melted Ti-6Al-4V,” Mater. Charact., 65, 8–15 (2012).CrossRef
6.
Zurück zum Zitat A. Safdar, H. Z. He, L. Y. Wei, A. Snis, et al., “Effect of process parameters settings and thickness on surface roughness of EBM produced Ti–6Al–4V,” Rapid Prototyp. J., 18 (5), 401–408 (2012).CrossRef A. Safdar, H. Z. He, L. Y. Wei, A. Snis, et al., “Effect of process parameters settings and thickness on surface roughness of EBM produced Ti–6Al–4V,” Rapid Prototyp. J., 18 (5), 401–408 (2012).CrossRef
7.
Zurück zum Zitat L. Loeber, S. Biamino, U. Ackelid, et al., “Comparison of selective laser and electron beam melted titanium aluminides,” in: Conf. paper of 22nd Intern. Symp. “Solid freeform fabrication proceedings” University of Texas, Austin (2011), pp. 547–556. L. Loeber, S. Biamino, U. Ackelid, et al., “Comparison of selective laser and electron beam melted titanium aluminides,” in: Conf. paper of 22nd Intern. Symp. “Solid freeform fabrication proceedings” University of Texas, Austin (2011), pp. 547–556.
8.
Zurück zum Zitat S. Biamino, A. Penna, U. Ackelid, et al., “Electron beam melting of Ti-48Al-2Cr-2Nb alloy: microstructure and mechanical properties investigation,” Intermetallics, 19, 776–781 (2011).CrossRef S. Biamino, A. Penna, U. Ackelid, et al., “Electron beam melting of Ti-48Al-2Cr-2Nb alloy: microstructure and mechanical properties investigation,” Intermetallics, 19, 776–781 (2011).CrossRef
9.
Zurück zum Zitat D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, “Laser additive manufacturing of metallic components: materials, processes and mechanisms,” Intern. Materials Rev., 57 (3), 133–164 (2012).CrossRef D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, “Laser additive manufacturing of metallic components: materials, processes and mechanisms,” Intern. Materials Rev., 57 (3), 133–164 (2012).CrossRef
10.
Zurück zum Zitat E. V. Ageeva, E. V. Ageev, S. V. Pikalov, E. A. Vorobiev, and A. N. Novikov, “X-ray analysis of the powder of micro- and nanometer fractions, obtained from wastes of alloy T15K6 in aqueous medium,” J. Nano Electron. Phys., 7 (4), 04058 (2015). E. V. Ageeva, E. V. Ageev, S. V. Pikalov, E. A. Vorobiev, and A. N. Novikov, “X-ray analysis of the powder of micro- and nanometer fractions, obtained from wastes of alloy T15K6 in aqueous medium,” J. Nano Electron. Phys., 7 (4), 04058 (2015).
11.
Zurück zum Zitat E. V. Ageeva, N. M. Khor’yakova, and E. V. Ageev, “Morphology of copper powder produced by electrospark dispersion from waste,” Russ. Eng. Res., 34 (11), 694–696 (2014). E. V. Ageeva, N. M. Khor’yakova, and E. V. Ageev, “Morphology of copper powder produced by electrospark dispersion from waste,” Russ. Eng. Res., 34 (11), 694–696 (2014).
12.
Zurück zum Zitat E. V. Ageeva, N. M. Khor’yakova, and E. V. Ageev, “Morphology and composition of copper electrospark powder suitable for sintering,” Russ. Eng. Res., 35 (1), 33–35 (2015). E. V. Ageeva, N. M. Khor’yakova, and E. V. Ageev, “Morphology and composition of copper electrospark powder suitable for sintering,” Russ. Eng. Res., 35 (1), 33–35 (2015).
13.
Zurück zum Zitat E. V. Ageev, A. Yu. Altukhov, E. V. Ageeva, and A. I. Pykhtin, “Structure and mechanical properties of powders obtained by electrodisperging cobalt-chromium alloy,” J. Appl. Eng. Sci., 19 (1), 230–236 (2021).CrossRef E. V. Ageev, A. Yu. Altukhov, E. V. Ageeva, and A. I. Pykhtin, “Structure and mechanical properties of powders obtained by electrodisperging cobalt-chromium alloy,” J. Appl. Eng. Sci., 19 (1), 230–236 (2021).CrossRef
14.
Zurück zum Zitat E. V. Ageeva, E. V. Ageev, and R. A. Latypov, “Properties of the VNZH pseudoalloy sintered from spark erosion powders fabricated in distilled water,” Russ. Metallurg. (Metally), 6, 119–123 (2021). E. V. Ageeva, E. V. Ageev, and R. A. Latypov, “Properties of the VNZH pseudoalloy sintered from spark erosion powders fabricated in distilled water,” Russ. Metallurg. (Metally), 6, 119–123 (2021).
15.
Zurück zum Zitat E. V. Ageev, E. V. Ageeva, and N. M. Khoryakova, “X-Ray methods for studying the surface of powder obtained by electroerosion dispersion of the waste of W-Ni-Fe 95 pseudoalloy in kerosene,” J. Surface Investig.: X-ray, Synchrotron Neutron Tech., 15, No. 4, 723–727 (2021).CrossRef E. V. Ageev, E. V. Ageeva, and N. M. Khoryakova, “X-Ray methods for studying the surface of powder obtained by electroerosion dispersion of the waste of W-Ni-Fe 95 pseudoalloy in kerosene,” J. Surface Investig.: X-ray, Synchrotron Neutron Tech., 15, No. 4, 723–727 (2021).CrossRef
16.
Zurück zum Zitat E. V. Ageev and E. V. Ageeva, “Wear resistance of hardened components produced from electrospark cobalt-chromium powder by additive manufacturing,” Russ. Eng. Res., 41, No. 8, 731–733 (2021).CrossRef E. V. Ageev and E. V. Ageeva, “Wear resistance of hardened components produced from electrospark cobalt-chromium powder by additive manufacturing,” Russ. Eng. Res., 41, No. 8, 731–733 (2021).CrossRef
17.
Zurück zum Zitat R. A. Latypov, A. V. Serov, N. V. Serov, and I. Yu. Ignatkin, “Recycling of wastes from mechanical engineering and metallurgy during the strengthening and restoration of machine parts,” Part 1, Part 2, Metallurg, No. 5, 81–87; No. 6, 87–92 (2021). R. A. Latypov, A. V. Serov, N. V. Serov, and I. Yu. Ignatkin, “Recycling of wastes from mechanical engineering and metallurgy during the strengthening and restoration of machine parts,” Part 1, Part 2, Metallurg, No. 5, 81–87; No. 6, 87–92 (2021).
Metadaten
Titel
Additive Products from Electroerosion of Cobalt-Chromium Powder
verfasst von
E. V. Ageev
E. V. Ageeva
A. Yu. Altukhov
Publikationsdatum
01.02.2022
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 9-10/2022
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-022-01259-5

Weitere Artikel der Ausgabe 9-10/2022

Metallurgist 9-10/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.