Skip to main content

2021 | OriginalPaper | Buchkapitel

Addressing Crystal Structure in Semiconductor Nanowires by Polarized Raman Spectroscopy

verfasst von : Claudia Fasolato, Ilaria Zardo, Marta De Luca

Erschienen in: Fundamental Properties of Semiconductor Nanowires

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Raman scattering is a powerful inelastic light scattering technique able to probe the vibrational properties of materials. This technique has been successfully employed in semiconductor nanowires to provide information on their fundamental properties, such as the phononic properties, the crystal composition, and the electronic band structure. When performed in a polarization-resolved manner on a single nanowire, Raman spectroscopy can even allow addressing the nanowire’s crystal structure. This is a fact of pivotal importance, as crystal phase is emerging as a novel degree of freedom in the bandgap engineering and phonon engineering of materials, and the control of the crystal phase is a possibility uniquely offered by nanowires. Indeed, recent advances in the synthetic growth of nanowires have given access to crystal phases (e.g., hexagonal phase in Si and Ge) that in the bulk can only be obtained under extreme pressure conditions, and it is possible to controllably switch between different crystal phases during the growth of nanowires. The realization and, even more, the interpretation of polarized Raman experiments on nanowires can be non-trivial, as several issues have to be considered. Therefore, in this chapter, we provide the basic theoretical background necessary to calculate Raman selection rules and interpret polarization-resolved Raman spectra of semiconductor nanowires. We also discuss the main ingredients of a Raman setup, with a focus on the scattering geometries typically used for nanowires. We highlight the main differences in the Raman spectra of nanowires with cubic and hexagonal crystal symmetries, and we treat also the case of the most challenging type of heterostructure: a nanoscale crystal-phase homostructure. Finally, we discuss resonant Raman experiments that allow the determination of the energy of some electronic transitions in nanowires. We focus mostly on a very new material system, namely Ge nanowires with controlled crystal phase, but the general procedure that we establish can be applied to several types of nanostructures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In hexagonal lattices, the four index Bravais–Miller scheme is often used for indicating crystal directions, with [0001] labeling the c-axis direction.
 
Literatur
1.
Zurück zum Zitat F. Bechstedt, A. Belabbes, Structure, energetics, and electronic states of III–V compound polytypes. J. Phys. Condens. Matter 25, 273201 (2013) F. Bechstedt, A. Belabbes, Structure, energetics, and electronic states of III–V compound polytypes. J. Phys. Condens. Matter 25, 273201 (2013)
2.
Zurück zum Zitat K. Takahashi, T. Morizumi, Growth of InAs whiskers in wurtzite structure. Japan. J. Appl. Phys. 5, 657 (1966)CrossRef K. Takahashi, T. Morizumi, Growth of InAs whiskers in wurtzite structure. Japan. J. Appl. Phys. 5, 657 (1966)CrossRef
3.
Zurück zum Zitat D. Jacobsson, F. Panciera, J. Tersoff, M.C. Reuter, S. Lehmann, S. Hofmann, K.A. Dick, F.M. Ross, Interface dynamics and crystal phase switching in GaAs nanowires. Nature 531, 317–322 (2016)CrossRef D. Jacobsson, F. Panciera, J. Tersoff, M.C. Reuter, S. Lehmann, S. Hofmann, K.A. Dick, F.M. Ross, Interface dynamics and crystal phase switching in GaAs nanowires. Nature 531, 317–322 (2016)CrossRef
4.
Zurück zum Zitat P. Krogstrup, H.I. Jorgensen, E. Johnson, M.H. Madsen, C.B. Sorensen, A. Fontcuberta i Morral, M. Aagesen, J. Nygard, F. Glas, Advances in the theory of III–V nanowire growth dynamics. J. Phys. D Appl. Phys. 46, 313001 (2013) P. Krogstrup, H.I. Jorgensen, E. Johnson, M.H. Madsen, C.B. Sorensen, A. Fontcuberta i Morral, M. Aagesen, J. Nygard, F. Glas, Advances in the theory of III–V nanowire growth dynamics. J. Phys. D Appl. Phys. 46, 313001 (2013)
5.
Zurück zum Zitat P. Caroff, J. Bolinsson, J. Johansson, Crystal phases in III–V nanowires: from random toward engineered polytypism. IEEE J. Sel. Top. Quant. Electron. 17, 829 (2011)CrossRef P. Caroff, J. Bolinsson, J. Johansson, Crystal phases in III–V nanowires: from random toward engineered polytypism. IEEE J. Sel. Top. Quant. Electron. 17, 829 (2011)CrossRef
6.
Zurück zum Zitat P. Caroff, K.A. Dick, J. Johansson, M.E. Messing, K. Deppert, L. Samuelson, Controlled polytypic and twin-plane superlattices in III–V nanowires. Nat. Nanotech. 4, 50 (2009)CrossRef P. Caroff, K.A. Dick, J. Johansson, M.E. Messing, K. Deppert, L. Samuelson, Controlled polytypic and twin-plane superlattices in III–V nanowires. Nat. Nanotech. 4, 50 (2009)CrossRef
7.
Zurück zum Zitat K.A. Dick, C. Thelander, L. Samuelson, P. Caroff, Crystal phase engineering in single InAs nanowires. Nano Lett. 10, 3494 (2010)CrossRef K.A. Dick, C. Thelander, L. Samuelson, P. Caroff, Crystal phase engineering in single InAs nanowires. Nano Lett. 10, 3494 (2010)CrossRef
8.
Zurück zum Zitat H.I.T. Hauge, M.A. Verheijen, S. Conesa-Boj, T. Etzelstorfer, M. Watzinger, D. Kriegner, I. Zardo, C. Fasolato, F. Capitani, P. Postorino et al., Hexagonal silicon realized. Nano Lett. 15, 5855–5860 (2015)CrossRef H.I.T. Hauge, M.A. Verheijen, S. Conesa-Boj, T. Etzelstorfer, M. Watzinger, D. Kriegner, I. Zardo, C. Fasolato, F. Capitani, P. Postorino et al., Hexagonal silicon realized. Nano Lett. 15, 5855–5860 (2015)CrossRef
9.
Zurück zum Zitat L. Vincent, G. Patriarche, G. Hallais, C. Renard, C. Gardes, D. Troadec, D. Bouchier, Novel heterostructured Ge nanowires based on polytype transformation. Nano Lett. 14, 4828–4836 (2014)CrossRef L. Vincent, G. Patriarche, G. Hallais, C. Renard, C. Gardes, D. Troadec, D. Bouchier, Novel heterostructured Ge nanowires based on polytype transformation. Nano Lett. 14, 4828–4836 (2014)CrossRef
10.
Zurück zum Zitat X. Cartoixà, M. Palummo, H.I.T. Hauge, E.P.A.M. Bakkers, R. Rurali, Optical emission in hexagonal SiGe nanowires. Nano Lett. 17, 4753–4758 (2017)CrossRef X. Cartoixà, M. Palummo, H.I.T. Hauge, E.P.A.M. Bakkers, R. Rurali, Optical emission in hexagonal SiGe nanowires. Nano Lett. 17, 4753–4758 (2017)CrossRef
11.
Zurück zum Zitat E.M.T. Fadaly, A. Dijkstra, J. R. Suckert, et al., Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature 580, 205–209 (2020) E.M.T. Fadaly, A. Dijkstra, J. R. Suckert, et al., Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature 580, 205–209 (2020)
12.
Zurück zum Zitat M. De Luca, I. Zardo, Semiconductor Nanowires: Raman Spectroscopy Studies, in Raman Spectroscopy and Applications, ed. by K. Maaz (InTech, 2017) M. De Luca, I. Zardo, Semiconductor Nanowires: Raman Spectroscopy Studies, in Raman Spectroscopy and Applications, ed. by K. Maaz (InTech, 2017)
13.
Zurück zum Zitat B. Loitsch, J. Winnerl, G. Grimaldi, J. Wierzbowski, D. Rudolph, Crystal phase quantum dots in the ultrathin core of GaAs-AlGaAs Core-shell nanowires. Nano Lett. 15, 7544 (2015) B. Loitsch, J. Winnerl, G. Grimaldi, J. Wierzbowski, D. Rudolph, Crystal phase quantum dots in the ultrathin core of GaAs-AlGaAs Core-shell nanowires. Nano Lett. 15, 7544 (2015)
14.
Zurück zum Zitat MB. Bavinck, KD. Jöns, M. Zieliński, G. Patriarche, JC. Harmand, N. Akopian, V. Zwiller, Photon cascade from a single crystal phase nanowire quantum dot. Nano Lett. 16, 1081 (2016) MB. Bavinck, KD. Jöns, M. Zieliński, G. Patriarche, JC. Harmand, N. Akopian, V. Zwiller, Photon cascade from a single crystal phase nanowire quantum dot. Nano Lett. 16, 1081 (2016)
15.
Zurück zum Zitat A. De, C.E. Pryor, Predicted band structures of III–V semiconductors in the wurtzite phase. Phys. Rev. B 81, 155210 (2010)CrossRef A. De, C.E. Pryor, Predicted band structures of III–V semiconductors in the wurtzite phase. Phys. Rev. B 81, 155210 (2010)CrossRef
16.
Zurück zum Zitat J.L. Birman, Simplified LCAO method for zincblende, wurtzite, and mixed crystal structures. Phys. Rev. B 115, 1493 (1959)CrossRef J.L. Birman, Simplified LCAO method for zincblende, wurtzite, and mixed crystal structures. Phys. Rev. B 115, 1493 (1959)CrossRef
17.
Zurück zum Zitat M. Murayama, T. Nakayama, Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. Phys. Rev. B 49, 4710 (1994)CrossRef M. Murayama, T. Nakayama, Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. Phys. Rev. B 49, 4710 (1994)CrossRef
18.
Zurück zum Zitat J. Ziy, X. Wan, G. Wei, K. Zhang, X. Xie, Lattice dynamics of zinc-blende GaN and AlN: I. Bulk phonons. J. Phys. Condens. Matter 8, 6323 (1996) J. Ziy, X. Wan, G. Wei, K. Zhang, X. Xie, Lattice dynamics of zinc-blende GaN and AlN: I. Bulk phonons. J. Phys. Condens. Matter 8, 6323 (1996)
19.
Zurück zum Zitat Harima, H, Properties of GaN and related compounds studied by means of Raman scattering. J. Phys. Condens. Matter 14, R967–R993 (2002) Harima, H, Properties of GaN and related compounds studied by means of Raman scattering. J. Phys. Condens. Matter 14, R967–R993 (2002)
20.
Zurück zum Zitat C.A. Arguello, D.L. Rousseau, S.P.S. Porto, First-order raman effect in wurtzite-type crystals. Phys. Rev. 181, 1351 (1969)CrossRef C.A. Arguello, D.L. Rousseau, S.P.S. Porto, First-order raman effect in wurtzite-type crystals. Phys. Rev. 181, 1351 (1969)CrossRef
21.
Zurück zum Zitat M. Cardona, Light Scattering in Solids II (Springer Topics in Applied Physics), ed. by M. Cardona, G. Güntherodt, vol. 50 (Berlin: Springer, 1982), pp. 5019–178 M. Cardona, Light Scattering in Solids II (Springer Topics in Applied Physics), ed. by M. Cardona, G. Güntherodt, vol. 50 (Berlin: Springer, 1982), pp. 5019–178
22.
Zurück zum Zitat B.R. Wu, First-principles study on the high-pressure behavior of the zone-center modes of lonsdaleite silicon. Phys. Rev. B 61, 5–8 (2000)CrossRef B.R. Wu, First-principles study on the high-pressure behavior of the zone-center modes of lonsdaleite silicon. Phys. Rev. B 61, 5–8 (2000)CrossRef
23.
Zurück zum Zitat M. Raya-Moreno, H. Aramberri, J.A. Seijas-Bellido, X. Cartoixà, R. Rurali, Thermal conductivity of hexagonal Si and hexagonal Si nanowires from first-principles. Appl. Phys. Lett. 111, 032107 (2017)CrossRef M. Raya-Moreno, H. Aramberri, J.A. Seijas-Bellido, X. Cartoixà, R. Rurali, Thermal conductivity of hexagonal Si and hexagonal Si nanowires from first-principles. Appl. Phys. Lett. 111, 032107 (2017)CrossRef
24.
Zurück zum Zitat M. De Luca, A. Polimeni, Electronic properties of wurtzite-phase InP nanowires determined by optical and magneto-optical spectroscopy. Appl. Phys. Rev. 4, 041102 (2017)CrossRef M. De Luca, A. Polimeni, Electronic properties of wurtzite-phase InP nanowires determined by optical and magneto-optical spectroscopy. Appl. Phys. Rev. 4, 041102 (2017)CrossRef
25.
Zurück zum Zitat I. Zardo, S. Conesa-Boj, F, Peiro, J.R. Morante, J. Arbiol, E. Uccelli, G. Abstreiter, A. Fontcuberta i Morral, Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects. Phys. Rev. B 80, 245324 (2009) I. Zardo, S. Conesa-Boj, F, Peiro, J.R. Morante, J. Arbiol, E. Uccelli, G. Abstreiter, A. Fontcuberta i Morral, Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects. Phys. Rev. B 80, 245324 (2009)
28.
Zurück zum Zitat A. Glebov et al., Novel Volume Bragg Grating Notch Filters for Ultralow-Frequency Raman Measurements. The 3rd Scientific EOS Annual Meeting (EOSAM 2010), paper, vol. 4007. (2010) A. Glebov et al., Novel Volume Bragg Grating Notch Filters for Ultralow-Frequency Raman Measurements. The 3rd Scientific EOS Annual Meeting (EOSAM 2010), paper, vol. 4007. (2010)
30.
Zurück zum Zitat R. Loudon, The Raman effect in crystals. Adv. Phys. 13, 423–482 (1964)CrossRef R. Loudon, The Raman effect in crystals. Adv. Phys. 13, 423–482 (1964)CrossRef
31.
Zurück zum Zitat M. De Luca, Addressing the electronic properties of III–V nanowires by photoluminescence excitation spectroscopy. J. Phys. D Appl. Phys. 50, 054001 (2017)CrossRef M. De Luca, Addressing the electronic properties of III–V nanowires by photoluminescence excitation spectroscopy. J. Phys. D Appl. Phys. 50, 054001 (2017)CrossRef
32.
Zurück zum Zitat J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Lieber, Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455 (2001)CrossRef J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Lieber, Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455 (2001)CrossRef
33.
Zurück zum Zitat H.E. Ruda, A. Shik, Polarization-sensitive optical phenomena in semiconducting and metallic nanowires. Phys. Rev. B 72, 115308 (2005)CrossRef H.E. Ruda, A. Shik, Polarization-sensitive optical phenomena in semiconducting and metallic nanowires. Phys. Rev. B 72, 115308 (2005)CrossRef
34.
Zurück zum Zitat M. De Luca, A. Zilli, A. Fonseka, S. Mokkapati, A. Miriametro, H. Tan, L. Smith, C. Jagadish, M. Capizzi, A. Polimeni, Polarized light absorption in wurtzite InP nanowire ensembles. Nano Lett. 15, 998 (2015)CrossRef M. De Luca, A. Zilli, A. Fonseka, S. Mokkapati, A. Miriametro, H. Tan, L. Smith, C. Jagadish, M. Capizzi, A. Polimeni, Polarized light absorption in wurtzite InP nanowire ensembles. Nano Lett. 15, 998 (2015)CrossRef
35.
Zurück zum Zitat L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, In Electrodynamics of Continuous Media. (Pergamon, Oxford, UK, 1984), p. 3442 L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, In Electrodynamics of Continuous Media. (Pergamon, Oxford, UK, 1984), p. 3442
36.
Zurück zum Zitat C. Fasolato, M. De Luca, D. Djomani, L. Vincent, C. Renard, G. Di Iorio, V. Paillard, M. Amato, R. Rurali, I. Zardo, Crystalline, phononic, and electronic properties of heterostructured polytypic Ge nanowires by Raman spectroscopy. Nano Lett. 18, 7075 (2018)CrossRef C. Fasolato, M. De Luca, D. Djomani, L. Vincent, C. Renard, G. Di Iorio, V. Paillard, M. Amato, R. Rurali, I. Zardo, Crystalline, phononic, and electronic properties of heterostructured polytypic Ge nanowires by Raman spectroscopy. Nano Lett. 18, 7075 (2018)CrossRef
37.
Zurück zum Zitat M. Ramsteiner, O. Brandt, P. Kusch, S. Breuer, S. Reich, L. Geelhaar, Quenching of the E2 phonon line in the Raman spectra of wurtzite GaAs nanowires caused by the dielectric polarization contrast. Appl. Phys. Lett. 103, 043121 (2013)CrossRef M. Ramsteiner, O. Brandt, P. Kusch, S. Breuer, S. Reich, L. Geelhaar, Quenching of the E2 phonon line in the Raman spectra of wurtzite GaAs nanowires caused by the dielectric polarization contrast. Appl. Phys. Lett. 103, 043121 (2013)CrossRef
38.
Zurück zum Zitat F.J. Lopez, J.K. Hyun, U. Givan, I.S. Kim, A.L. Holsteen, L.J. Lauhon, Diameter and polarization-dependent raman scattering intensities of semiconductor nanowires. Nano Lett. 12, 2266 (2012)CrossRef F.J. Lopez, J.K. Hyun, U. Givan, I.S. Kim, A.L. Holsteen, L.J. Lauhon, Diameter and polarization-dependent raman scattering intensities of semiconductor nanowires. Nano Lett. 12, 2266 (2012)CrossRef
39.
Zurück zum Zitat J. Fréchette, C. Carraro, Diameter-dependent modulation and polarization anisotropy in Raman scattering from individual nanowires. Phys. Rev. B 74, 161404 (2006)CrossRef J. Fréchette, C. Carraro, Diameter-dependent modulation and polarization anisotropy in Raman scattering from individual nanowires. Phys. Rev. B 74, 161404 (2006)CrossRef
40.
Zurück zum Zitat M.Y. Swinkels, A. Campo, D. Vakulov, K. Wonjong, L. Gagliano, S. Escobar Steinvall, H. Detz, M. De Luca, A. Lugstein, E. Bakkers, A. Fontcuberta i Morral, I. Zardo, Measuring the optical absorption of single nanowires. Phys. Rev. Appl. 14, 024045 (2020) M.Y. Swinkels, A. Campo, D. Vakulov, K. Wonjong, L. Gagliano, S. Escobar Steinvall, H. Detz, M. De Luca, A. Lugstein, E. Bakkers, A. Fontcuberta i Morral, I. Zardo, Measuring the optical absorption of single nanowires. Phys. Rev. Appl. 14, 024045 (2020)
41.
Zurück zum Zitat J.H. Parker Jr., D.W. Feldman, M. Ashkin, Raman scattering by silicon and germanium. Phys. Rev. 155, 712 (1967)CrossRef J.H. Parker Jr., D.W. Feldman, M. Ashkin, Raman scattering by silicon and germanium. Phys. Rev. 155, 712 (1967)CrossRef
42.
Zurück zum Zitat X. Gonze, J.-P. Vigneron, Density-functional approach to nonlinear-response coefficients of solids. Phys. Rev. B 39, 13120 (1989)CrossRef X. Gonze, J.-P. Vigneron, Density-functional approach to nonlinear-response coefficients of solids. Phys. Rev. B 39, 13120 (1989)CrossRef
43.
Zurück zum Zitat J.F. Nye, Physical Properties of Crystals (Clarendon Press, Oxford, 1957) J.F. Nye, Physical Properties of Crystals (Clarendon Press, Oxford, 1957)
44.
Zurück zum Zitat S.A. Fortuna, X. Li, Metal-catalyzed semiconductor nanowires: a review on the control of growth directions. Semicond. Sci. Technol. 25, 024005 (2010)CrossRef S.A. Fortuna, X. Li, Metal-catalyzed semiconductor nanowires: a review on the control of growth directions. Semicond. Sci. Technol. 25, 024005 (2010)CrossRef
45.
Zurück zum Zitat D. de Matteis, M. De Luca, E.M.T. Fadaly, M.A. Verheijen, M. López-Suárez, R. Rurali, E.P.A.M. Bakkers, I. Zardo, Probing lattice dynamics and electronic resonances in hexagonal Ge and SixGe1-x alloys in nanowires by Raman spectroscopy. ACS Nano. 14(6), 6845–6856 (2020) D. de Matteis, M. De Luca, E.M.T. Fadaly, M.A. Verheijen, M. López-Suárez, R. Rurali, E.P.A.M. Bakkers, I. Zardo, Probing lattice dynamics and electronic resonances in hexagonal Ge and SixGe1-x alloys in nanowires by Raman spectroscopy. ACS Nano. 14(6), 6845–6856 (2020)
46.
Zurück zum Zitat A.A. Kelly, K.M. Knowles, Crystallography and Crystal Defects, 2nd edn. (Wiley, Weinheim, Germany, 2012)CrossRef A.A. Kelly, K.M. Knowles, Crystallography and Crystal Defects, 2nd edn. (Wiley, Weinheim, Germany, 2012)CrossRef
47.
Zurück zum Zitat M. De Luca, C. Fasolato, M.A. Verheijen, Y. Ren, M.Y. Swinkels, S. Kölling, E.P.A.M. Bakkers, R. Rurali, I. Zardo, Phonon engineering in twinning superlattice nanowires. Nano Lett. 19, 4702 (2019)CrossRef M. De Luca, C. Fasolato, M.A. Verheijen, Y. Ren, M.Y. Swinkels, S. Kölling, E.P.A.M. Bakkers, R. Rurali, I. Zardo, Phonon engineering in twinning superlattice nanowires. Nano Lett. 19, 4702 (2019)CrossRef
48.
Zurück zum Zitat F. Cerdeira, W. Dreybrodt, M. Cardona, Resonant Raman scattering in germanium. Solid State Comm. 10, 591 (1972)CrossRef F. Cerdeira, W. Dreybrodt, M. Cardona, Resonant Raman scattering in germanium. Solid State Comm. 10, 591 (1972)CrossRef
49.
Zurück zum Zitat T. Kaewmaraya, L. Vincent, M. Amato, Accurate estimation of band offsets in group IV polytype junctions: a first-principles study. J. Phys. Chem. C 121, 5820 (2017)CrossRef T. Kaewmaraya, L. Vincent, M. Amato, Accurate estimation of band offsets in group IV polytype junctions: a first-principles study. J. Phys. Chem. C 121, 5820 (2017)CrossRef
Metadaten
Titel
Addressing Crystal Structure in Semiconductor Nanowires by Polarized Raman Spectroscopy
verfasst von
Claudia Fasolato
Ilaria Zardo
Marta De Luca
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9050-4_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.