Skip to main content
Erschienen in: Neural Computing and Applications 8/2018

11.01.2017 | Original Article

Adequacy of first mode shape differences for damage identification of cantilever structures using neural networks

verfasst von: Mohammadreza Vafaei, Sophia C. Alih

Erschienen in: Neural Computing and Applications | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Damage identification of structures has attracted attention of researchers due to sudden collapse of in-service structures. Modal parameters and their derivatives have been widely employed in the proposed damage identification techniques. However, mode shape differences have been shown to be an ideal damage indicator when used as the input vector of neural networks. Since measurement of higher-order mode shapes is very difficult to be acquired reliably, this study investigated the adequacy of using only the first mode shape differences for damage identification using artificial neural networks. Results of numerical and experimental studies on a cantilever beam indicated that the first mode shape differences alone can accurately localize imposed damages. Damage intensity at the lower levels of cantilever beam was predicted with less than 15% error; however, prediction of damage intensity at the free end of the beam encountered large discrepancies. It was also found that damage localization was successful even when the first mode shape differences were measured at few points along the beam.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Vafaei M, Adnan AB, Rahman AB Abd (2014) A neuro-wavelet technique for seismic damage identification of cantilever structures. Struct Infrastruct Eng 10(12):1666–1684CrossRef Vafaei M, Adnan AB, Rahman AB Abd (2014) A neuro-wavelet technique for seismic damage identification of cantilever structures. Struct Infrastruct Eng 10(12):1666–1684CrossRef
2.
Zurück zum Zitat Fan W, Qiao P (2011) Vibration-based damage identification methods: a review and comparative study. Struct Health Monit 10(1):83–111CrossRef Fan W, Qiao P (2011) Vibration-based damage identification methods: a review and comparative study. Struct Health Monit 10(1):83–111CrossRef
3.
Zurück zum Zitat Vafaei M, Adnan AB (2014) Seismic damage detection of tall airport traffic control towers using wavelet analysis. Struct Infrastruct Eng 10(1):106–127CrossRef Vafaei M, Adnan AB (2014) Seismic damage detection of tall airport traffic control towers using wavelet analysis. Struct Infrastruct Eng 10(1):106–127CrossRef
4.
Zurück zum Zitat Zhan JW, Xia H, Chen SY, De Roeck G (2011) Structural damage identification for railway bridges based on train-induced bridge responses and sensitivity analysis. J Sound Vib 330(4):757–770CrossRef Zhan JW, Xia H, Chen SY, De Roeck G (2011) Structural damage identification for railway bridges based on train-induced bridge responses and sensitivity analysis. J Sound Vib 330(4):757–770CrossRef
5.
Zurück zum Zitat Arangio S, Bontempi F (2015) Structural health monitoring of a cable-stayed bridge with Bayesian neural networks. Struct Infrastruct Eng 11(4):575–587CrossRef Arangio S, Bontempi F (2015) Structural health monitoring of a cable-stayed bridge with Bayesian neural networks. Struct Infrastruct Eng 11(4):575–587CrossRef
6.
Zurück zum Zitat Vafaei M, Adnan AB, Rahman AB Abd (2013) Real-time seismic damage detection of concrete shear walls using artificial neural networks. J Earthq Eng 17(1):137–154CrossRef Vafaei M, Adnan AB, Rahman AB Abd (2013) Real-time seismic damage detection of concrete shear walls using artificial neural networks. J Earthq Eng 17(1):137–154CrossRef
7.
Zurück zum Zitat Vafaei M, Alih SC, Rahman ABA, Adnan AB (2015) A wavelet-based technique for damage quantification via mode shape decomposition. Struct Infrastruct Eng 11(7):869–883CrossRef Vafaei M, Alih SC, Rahman ABA, Adnan AB (2015) A wavelet-based technique for damage quantification via mode shape decomposition. Struct Infrastruct Eng 11(7):869–883CrossRef
8.
Zurück zum Zitat Bandara RP, Chan TH, Thambiratnam DP (2014) Frequency response function based damage identification using principal component analysis and pattern recognition technique. Eng Struct 66:116–128CrossRef Bandara RP, Chan TH, Thambiratnam DP (2014) Frequency response function based damage identification using principal component analysis and pattern recognition technique. Eng Struct 66:116–128CrossRef
9.
Zurück zum Zitat Wu X, Ghaboussi J, Garrett JH (1992) Use of neural networks in detection of structural damage. Comput Struct 42(4):649–659CrossRef Wu X, Ghaboussi J, Garrett JH (1992) Use of neural networks in detection of structural damage. Comput Struct 42(4):649–659CrossRef
10.
Zurück zum Zitat Sahin M, Shenoi RA (2003) Quantification and localization of damage in beam-like structures by using artificial neural networks with experimental validation. Eng Struct 25(14):1785–1802CrossRef Sahin M, Shenoi RA (2003) Quantification and localization of damage in beam-like structures by using artificial neural networks with experimental validation. Eng Struct 25(14):1785–1802CrossRef
11.
Zurück zum Zitat Li J, Dackermann U, Xu Y, Samali B (2011) Damage identification in civil engineering structures utilizing PCA-compressed residual frequency response functions and neural network ensembles. Struct Control Health Monit 18(2):207–226CrossRef Li J, Dackermann U, Xu Y, Samali B (2011) Damage identification in civil engineering structures utilizing PCA-compressed residual frequency response functions and neural network ensembles. Struct Control Health Monit 18(2):207–226CrossRef
12.
Zurück zum Zitat Yam LH, Yan YJ, Jiang JS (2003) Vibration-based damage detection for composite structures using wavelet transform and neural network identification. Compos Struct 60(4):403–412CrossRef Yam LH, Yan YJ, Jiang JS (2003) Vibration-based damage detection for composite structures using wavelet transform and neural network identification. Compos Struct 60(4):403–412CrossRef
13.
Zurück zum Zitat Lee JJ, Lee JW, Yi JH, Yun CB, Jung YJ (2005) Neural network based damage detection for bridges considering errors in baseline finite elements models. J Sound Vib 280(3):555–578CrossRef Lee JJ, Lee JW, Yi JH, Yun CB, Jung YJ (2005) Neural network based damage detection for bridges considering errors in baseline finite elements models. J Sound Vib 280(3):555–578CrossRef
14.
Zurück zum Zitat Mehrjoo M, Khaji N, Moharrami H, Bahreininejad A (2008) Damage detection of truss bridge joints using artificial neural networks. Expert Syst Appl 35(3):1122–1131CrossRef Mehrjoo M, Khaji N, Moharrami H, Bahreininejad A (2008) Damage detection of truss bridge joints using artificial neural networks. Expert Syst Appl 35(3):1122–1131CrossRef
15.
Zurück zum Zitat Zang C, Imregun M (2001) Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection. J Sound Vib 242(5):813–827CrossRef Zang C, Imregun M (2001) Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection. J Sound Vib 242(5):813–827CrossRef
16.
Zurück zum Zitat Qi GZ, Xun G, Xiaozhai Q, Dong W, Chang P (2005) Local measurement for structural health monitoring. Earthq Eng Eng Vib 4(1):165–172CrossRef Qi GZ, Xun G, Xiaozhai Q, Dong W, Chang P (2005) Local measurement for structural health monitoring. Earthq Eng Eng Vib 4(1):165–172CrossRef
17.
Zurück zum Zitat Wilson EL, Habibullah A (2003) Structural Analysis Program Sap 2000. Berkeley, Calif. Computer and Structures Inc, Users Manual Wilson EL, Habibullah A (2003) Structural Analysis Program Sap 2000. Berkeley, Calif. Computer and Structures Inc, Users Manual
18.
Zurück zum Zitat Dackermann U (2010) Vibration-based damage identification methods for civil engineering structures using artificial neural networks. Ph.D. Thesis, University of Technology Sydney. Sydney, Australia Dackermann U (2010) Vibration-based damage identification methods for civil engineering structures using artificial neural networks. Ph.D. Thesis, University of Technology Sydney. Sydney, Australia
19.
Zurück zum Zitat Lyn Dee G, Bakhary N, Abdul Rahman A, Hisham Ahmad B (2011) A comparison of artificial neural network learning algorithms for vibration-based damage detection. Adv Mater Res 163:2756–2760 Lyn Dee G, Bakhary N, Abdul Rahman A, Hisham Ahmad B (2011) A comparison of artificial neural network learning algorithms for vibration-based damage detection. Adv Mater Res 163:2756–2760
Metadaten
Titel
Adequacy of first mode shape differences for damage identification of cantilever structures using neural networks
verfasst von
Mohammadreza Vafaei
Sophia C. Alih
Publikationsdatum
11.01.2017
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 8/2018
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-017-2846-6

Weitere Artikel der Ausgabe 8/2018

Neural Computing and Applications 8/2018 Zur Ausgabe