Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

12.04.2018 | Original Paper | Ausgabe 6/2018

Geotechnical and Geological Engineering 6/2018

Advanced Mathematical Models to Predict the Compaction Properties of Coarse-Grained Soils from Various Physical Properties

Zeitschrift:
Geotechnical and Geological Engineering > Ausgabe 6/2018
Autoren:
Maher Omar, Abdallah Shanableh, Mohamed Arab, Khaled Hamad, Ali Tahmaz

Abstract

An essential task in the process of construction is the determination of compaction properties of soils. Many years of laboratory test experience strengthen our belief in the existence of predictive equations that govern the compaction characteristics of soils. An advanced mathematical model developed in this research in order to uncertain the governing equations. An advanced mathematical model developed in this research in order to uncertain the governing equations. Through a comparative study among a Multiple Linear Regression (MLR) model, an Artificial Neural Network (ANN) model, Extreme Learning Machine (ELM) and a Support Vector Machine (SVM) model, the best predicting model was determined. For this purpose, Six hundred and six (606) samples collected and split into a dataset used for training the models and another used for validation of the derived model. 8 neural networks with a varying number of hidden layers and a varying number of nodes in hidden layers were employed. In ELM 1 hidden layer with varying number of units were employed. It was found that the equations derived from the ELM models described the relationship with superiority over multiple regression, ANN and SVM models for Maximum Dry Density and MLR models described the relationship with superiority over ANN, ELM and SVM models for Optimum Moisture Content.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2018

Geotechnical and Geological Engineering 6/2018 Zur Ausgabe