Skip to main content

2020 | OriginalPaper | Buchkapitel

13. Advanced Medical Imaging Analytics in Breast Cancer Diagnosis

verfasst von : Yinlin Fu, Bhavika K. Patel, Teresa Wu, Jing Li, Fei Gao

Erschienen in: Women in Industrial and Systems Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modern imaging technique provides a fast, noninvasive means to study physiologic, metabolic, and molecular processes in the body. Imaging is the primary means in clinical cancer practice to facilitate diagnosis, prognosis, and treatment evaluation. While breast cancer contributes to 25% of morbidity in all cancer and is the second leading cause of cancer death in women, it is also one of the most treatable malignancies if detected early. In this chapter, we present an overview of research using advanced imaging analytics tools on Digital Mammography (DM) to improve the sensitivity and specificity of breast cancer detection. Currently, there are two dominating trends in the advanced imaging analytics field: texture analysis and deep learning. We implement three texture analysis algorithms: Gray Level Co-Occurrence Matrix (GLCM), Local binary patterns (LBP), and Gabor Filter and one deep learning network: ResNet. Gradient Boosted Tree (GBT) classifier is then developed on the features to diagnose the lesion as malignant vs. benign. The classifier using texture features from each texture analysis algorithm has an accuracy of 0.82, 0.72, and 0.72 for GLCM, LBP, and Gabor, respectively. If the texture features from different texture analysis algorithms are pooled together, the classifier has an accuracy of 0.81. The same classifier using features extracted from ResNet has an accuracy of 0.89 indicating the potentials of deep learning in medical imaging for disease diagnosis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abbey CK, Nosrateih A, Sohl-Dickstein J, Yang K, Boone JM (2012) Non-Gaussian statistical properties of breast images. Med Phys 39(11):7121–7130CrossRef Abbey CK, Nosrateih A, Sohl-Dickstein J, Yang K, Boone JM (2012) Non-Gaussian statistical properties of breast images. Med Phys 39(11):7121–7130CrossRef
Zurück zum Zitat American College of Radiology (1998) BI-RADS Committee, “breast imaging reporting and data system”. Radiol Clin North Am 40:409–430 American College of Radiology (1998) BI-RADS Committee, “breast imaging reporting and data system”. Radiol Clin North Am 40:409–430
Zurück zum Zitat Antropova N, Huynh BQ, Giger ML (2017) A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys 44(10):5162–5171CrossRef Antropova N, Huynh BQ, Giger ML (2017) A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys 44(10):5162–5171CrossRef
Zurück zum Zitat Arevalo J, González FA, Ramos-Pollán R, Oliveira JL, Guevara Lopez MA (2016) Representation learning for mammography mass lesion classification with convolutional neural networks. Comput Methods Prog Biomed 127:248–257CrossRef Arevalo J, González FA, Ramos-Pollán R, Oliveira JL, Guevara Lopez MA (2016) Representation learning for mammography mass lesion classification with convolutional neural networks. Comput Methods Prog Biomed 127:248–257CrossRef
Zurück zum Zitat Bar Y, Diamant I, Wolf L, Greenspan H (2015) Deep learning with non-medical training used for chest pathology identification. In: Medical imaging 2015: computer-aided diagnosis, vol 9414, p 94140V. International Society for Optics and Photonics Bar Y, Diamant I, Wolf L, Greenspan H (2015) Deep learning with non-medical training used for chest pathology identification. In: Medical imaging 2015: computer-aided diagnosis, vol 9414, p 94140V. International Society for Optics and Photonics
Zurück zum Zitat Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A (2017) Deep learning in mammography diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Investig Radiol 52(7):434–440CrossRef Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A (2017) Deep learning in mammography diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Investig Radiol 52(7):434–440CrossRef
Zurück zum Zitat Carneiro G, Nascimento J, Bradley AP (2017) Automated analysis of unregistered multi-view mammograms with deep learning. IEEE Trans Med Imaging 36(11):2355–2365CrossRef Carneiro G, Nascimento J, Bradley AP (2017) Automated analysis of unregistered multi-view mammograms with deep learning. IEEE Trans Med Imaging 36(11):2355–2365CrossRef
Zurück zum Zitat Cha KH, Hadjiiski L, Samala RK, Chan H-P, Caoili EM, Cohan RH (2016) Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets. Med Phys 43(4):1882–1896CrossRef Cha KH, Hadjiiski L, Samala RK, Chan H-P, Caoili EM, Cohan RH (2016) Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets. Med Phys 43(4):1882–1896CrossRef
Zurück zum Zitat Choi JY, Ro YM (2012) Multiresolution local binary pattern texture analysis combined with variable selection for application to false-positive reduction in computer-aided detection of breast masses on mammograms. Phys Med Biol 57(21):7029–7052CrossRef Choi JY, Ro YM (2012) Multiresolution local binary pattern texture analysis combined with variable selection for application to false-positive reduction in computer-aided detection of breast masses on mammograms. Phys Med Biol 57(21):7029–7052CrossRef
Zurück zum Zitat Davnall F et al (2012) Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 3(6):573–589CrossRef Davnall F et al (2012) Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 3(6):573–589CrossRef
Zurück zum Zitat do Nascimento MZ, Martins AS, Neves LA, Ramos RP, Flores EL, Carrijo GA (2013) Classification of masses in mammographic image using wavelet domain features and polynomial classifier. Expert Syst Appl 40(15):6213–6221CrossRef do Nascimento MZ, Martins AS, Neves LA, Ramos RP, Flores EL, Carrijo GA (2013) Classification of masses in mammographic image using wavelet domain features and polynomial classifier. Expert Syst Appl 40(15):6213–6221CrossRef
Zurück zum Zitat Ferrari RJ, Rangayyan RM, Desautels JEL, Frère AF (2001) Analysis of asymmetry in mammograms via directional filtering with Gabor wavelets. IEEE Trans Med Imaging 20(9):953–964CrossRef Ferrari RJ, Rangayyan RM, Desautels JEL, Frère AF (2001) Analysis of asymmetry in mammograms via directional filtering with Gabor wavelets. IEEE Trans Med Imaging 20(9):953–964CrossRef
Zurück zum Zitat Ferrari RJ, Rangayyan RM, Desautels JEL, Borges RA, Frère AF (2004) Automatic identification of the pectoral muscle in mammograms. IEEE Trans Med Imaging 23(2):232–245CrossRef Ferrari RJ, Rangayyan RM, Desautels JEL, Borges RA, Frère AF (2004) Automatic identification of the pectoral muscle in mammograms. IEEE Trans Med Imaging 23(2):232–245CrossRef
Zurück zum Zitat Gao F, Zhang M, Wu T, Bennett KM (2016) 3D small structure detection in medical image using texture analysis. In: 2016 38th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 6433–6436 Gao F, Zhang M, Wu T, Bennett KM (2016) 3D small structure detection in medical image using texture analysis. In: 2016 38th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 6433–6436
Zurück zum Zitat Gargouri N, Dammak Masmoudi A, Sellami Masmoudi D, Abid R (2012) A new GLLD operator for mass detection in digital mammograms. Int J Biomed Imaging 2012:765649CrossRef Gargouri N, Dammak Masmoudi A, Sellami Masmoudi D, Abid R (2012) A new GLLD operator for mass detection in digital mammograms. Int J Biomed Imaging 2012:765649CrossRef
Zurück zum Zitat Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybernet SMC-3(6):610–621CrossRef Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybernet SMC-3(6):610–621CrossRef
Zurück zum Zitat Hubbard RA, Kerlikowske K, Flowers CI, Yankaskas BC, Zhu W, Miglioretti DL (2011) Cumulative probability of false-positive recall or biopsy recommendation after 10 years of screening mammography. Ann Intern Med 155(8):481CrossRef Hubbard RA, Kerlikowske K, Flowers CI, Yankaskas BC, Zhu W, Miglioretti DL (2011) Cumulative probability of false-positive recall or biopsy recommendation after 10 years of screening mammography. Ann Intern Med 155(8):481CrossRef
Zurück zum Zitat Huynh BQ, Li H, Giger ML (2016) Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J Med Imaging 3(3):34501CrossRef Huynh BQ, Li H, Giger ML (2016) Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J Med Imaging 3(3):34501CrossRef
Zurück zum Zitat Jadoon MM, Zhang Q, Haq IU, Butt S, Jadoon A (2017) Three-class mammogram classification based on descriptive CNN features. Biomed Res Int 2017:3640901CrossRef Jadoon MM, Zhang Q, Haq IU, Butt S, Jadoon A (2017) Three-class mammogram classification based on descriptive CNN features. Biomed Res Int 2017:3640901CrossRef
Zurück zum Zitat Jain AK, Ratha NK, Lakshmanan S (1997) Object detection using gabor filters. Pattern Recogn 30(2):295–309CrossRef Jain AK, Ratha NK, Lakshmanan S (1997) Object detection using gabor filters. Pattern Recogn 30(2):295–309CrossRef
Zurück zum Zitat Jona JB, Nagaveni N (2014) Ant-cuckoo colony optimization for feature selection in digital mammogram. Pak J Biol Sci 17(2):266–271CrossRef Jona JB, Nagaveni N (2014) Ant-cuckoo colony optimization for feature selection in digital mammogram. Pak J Biol Sci 17(2):266–271CrossRef
Zurück zum Zitat Kallenberg M et al (2016) Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging 35(5):1322–1331CrossRef Kallenberg M et al (2016) Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging 35(5):1322–1331CrossRef
Zurück zum Zitat Kashyap KL, Bajpai MK, Khanna P (2017) Globally supported radial basis function based collocation method for evolution of level set in mass segmentation using mammograms. Comput Biol Med 87:22–37CrossRef Kashyap KL, Bajpai MK, Khanna P (2017) Globally supported radial basis function based collocation method for evolution of level set in mass segmentation using mammograms. Comput Biol Med 87:22–37CrossRef
Zurück zum Zitat Kashyap KL, Bajpai MK, Khanna P, Giakos G (2018) Mesh‐free based variational level set evolution for breast region segmentation and abnormality detection using mammograms. Int J Numer Method Biomed Eng 34(1):e2907CrossRef Kashyap KL, Bajpai MK, Khanna P, Giakos G (2018) Mesh‐free based variational level set evolution for breast region segmentation and abnormality detection using mammograms. Int J Numer Method Biomed Eng 34(1):e2907CrossRef
Zurück zum Zitat Kassner A, Thornhill RE (2010) Texture analysis: a review of neurologic MR imaging applications. Am J Neuroradiol 31(5):809–816CrossRef Kassner A, Thornhill RE (2010) Texture analysis: a review of neurologic MR imaging applications. Am J Neuroradiol 31(5):809–816CrossRef
Zurück zum Zitat Kooi T, Karssemeijer N (2017) Classifying symmetrical differences and temporal change in mammography using deep neural networks. J Med Imaging (Bellingham) 4(4):044501 Kooi T, Karssemeijer N (2017) Classifying symmetrical differences and temporal change in mammography using deep neural networks. J Med Imaging (Bellingham) 4(4):044501
Zurück zum Zitat Kooi T, van Ginneken B, Karssemeijer N, den Heeten A (2017a) Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network. Med Phys 44(3):1017–1027CrossRef Kooi T, van Ginneken B, Karssemeijer N, den Heeten A (2017a) Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network. Med Phys 44(3):1017–1027CrossRef
Zurück zum Zitat Kooi T et al (2017b) Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 35:303–312CrossRef Kooi T et al (2017b) Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 35:303–312CrossRef
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th international conference on neural information processing systems, vol 1. Curran Associates Inc., pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th international conference on neural information processing systems, vol 1. Curran Associates Inc., pp 1097–1105
Zurück zum Zitat Larroza A, Bodí V, Moratal D (2016) Texture analysis in magnetic resonance imaging: review and considerations for future applications. In: Assessment of cellular and organ function and dysfunction using direct and derived mri methodologies. InTech Larroza A, Bodí V, Moratal D (2016) Texture analysis in magnetic resonance imaging: review and considerations for future applications. In: Assessment of cellular and organ function and dysfunction using direct and derived mri methodologies. InTech
Zurück zum Zitat Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef
Zurück zum Zitat Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
Zurück zum Zitat Li Z et al (2017) Diagnostic performance of mammographic texture analysis in the differential diagnosis of benign and malignant breast tumors. Clin Breast Cancer 18(4):e621–e627CrossRef Li Z et al (2017) Diagnostic performance of mammographic texture analysis in the differential diagnosis of benign and malignant breast tumors. Clin Breast Cancer 18(4):e621–e627CrossRef
Zurück zum Zitat Li S et al (2018) Computer-aided assessment of breast density: comparison of supervised deep learning and feature-based statistical learning. Phys Med Biol 63(2):25005MathSciNetCrossRef Li S et al (2018) Computer-aided assessment of breast density: comparison of supervised deep learning and feature-based statistical learning. Phys Med Biol 63(2):25005MathSciNetCrossRef
Zurück zum Zitat Lladó X, Oliver A, Freixenet J, Martí R, Martí J (2009) A textural approach for mass false positive reduction in mammography. Comput Med Imaging Graph 33(6):415–422CrossRef Lladó X, Oliver A, Freixenet J, Martí R, Martí J (2009) A textural approach for mass false positive reduction in mammography. Comput Med Imaging Graph 33(6):415–422CrossRef
Zurück zum Zitat Malar E, Kandaswamy A, Chakravarthy D, Giri Dharan A (2012) A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine. Comput Biol Med 42(9):898–905CrossRef Malar E, Kandaswamy A, Chakravarthy D, Giri Dharan A (2012) A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine. Comput Biol Med 42(9):898–905CrossRef
Zurück zum Zitat Mascaro AA, Mello CAB, Santos WP, Cavalcanti GDC (2009) Mammographic images segmentation using texture descriptors. In: Proceedings of the 31st annual international conference of the IEEE engineering in medicine and biology society: engineering the future of biomedicine, EMBC 2009, pp 3653–3656 Mascaro AA, Mello CAB, Santos WP, Cavalcanti GDC (2009) Mammographic images segmentation using texture descriptors. In: Proceedings of the 31st annual international conference of the IEEE engineering in medicine and biology society: engineering the future of biomedicine, EMBC 2009, pp 3653–3656
Zurück zum Zitat Materka A (2004) Texture analysis methodologies for magnetic resonance imaging. Dialog Clin Neurosci 6(2):243–250 Materka A (2004) Texture analysis methodologies for magnetic resonance imaging. Dialog Clin Neurosci 6(2):243–250
Zurück zum Zitat Mohamed AA, Berg WA, Peng H, Luo Y, Jankowitz RC, Wu S (2018a) A deep learning method for classifying mammographic breast density categories. Med Phys 45(1):314–321CrossRef Mohamed AA, Berg WA, Peng H, Luo Y, Jankowitz RC, Wu S (2018a) A deep learning method for classifying mammographic breast density categories. Med Phys 45(1):314–321CrossRef
Zurück zum Zitat Mohamed AA, Luo Y, Peng H, Jankowitz RC, Wu S (2018b) Understanding clinical mammographic breast density assessment: a deep learning perspective. J Digit Imaging 31(4):387–392CrossRef Mohamed AA, Luo Y, Peng H, Jankowitz RC, Wu S (2018b) Understanding clinical mammographic breast density assessment: a deep learning perspective. J Digit Imaging 31(4):387–392CrossRef
Zurück zum Zitat Moreira IC, Amaral I, Domingues I, Cardoso A, Cardoso MJ, Cardoso JS (2012) INbreast: toward a full-field digital mammographic database. Acad Radiol 19(2):236–248CrossRef Moreira IC, Amaral I, Domingues I, Cardoso A, Cardoso MJ, Cardoso JS (2012) INbreast: toward a full-field digital mammographic database. Acad Radiol 19(2):236–248CrossRef
Zurück zum Zitat Muramatsu C, Hara T, Endo T, Fujita H (2016) Breast mass classification on mammograms using radial local ternary patterns. Comput Biol Med 72:43–53CrossRef Muramatsu C, Hara T, Endo T, Fujita H (2016) Breast mass classification on mammograms using radial local ternary patterns. Comput Biol Med 72:43–53CrossRef
Zurück zum Zitat Ojala T, Pietikäinen M, Mäenpää T (2001) A generalized local binary pattern operator for multiresolution gray scale and rotation invariant texture classification. Springer, Berlin, pp 399–408MATH Ojala T, Pietikäinen M, Mäenpää T (2001) A generalized local binary pattern operator for multiresolution gray scale and rotation invariant texture classification. Springer, Berlin, pp 399–408MATH
Zurück zum Zitat Oliver A, Lladó X, Freixenet J, Martí J (2007) False positive reduction in mammographic mass detection using local binary patterns. In: Medical image computing and computer-assisted intervention : MICCAI ... international conference on medical image computing and computer-assisted intervention, vol 10, no. Pt 1, pp 286–93 Oliver A, Lladó X, Freixenet J, Martí J (2007) False positive reduction in mammographic mass detection using local binary patterns. In: Medical image computing and computer-assisted intervention : MICCAI ... international conference on medical image computing and computer-assisted intervention, vol 10, no. Pt 1, pp 286–93
Zurück zum Zitat Purwadi NS, Atay HT, Kurt KK, Turkeli S (2016) Assessment of content-based image retrieval approaches for mammography based on breast density patterns. Stud Health Technol Inf 228:727–731 Purwadi NS, Atay HT, Kurt KK, Turkeli S (2016) Assessment of content-based image retrieval approaches for mammography based on breast density patterns. Stud Health Technol Inf 228:727–731
Zurück zum Zitat Rangayyan RM, Nguyen TM, Ayres FJ, Nandi AK (2010) Effect of pixel resolution on texture features of breast masses in mammograms. J Digit Imaging 23(5):547–553CrossRef Rangayyan RM, Nguyen TM, Ayres FJ, Nandi AK (2010) Effect of pixel resolution on texture features of breast masses in mammograms. J Digit Imaging 23(5):547–553CrossRef
Zurück zum Zitat Reyad YA, Berbar MA, Hussain M (2014) Comparison of statistical, LBP, and multi-resolution analysis features for breast mass classification. J Med Syst 38(9):100CrossRef Reyad YA, Berbar MA, Hussain M (2014) Comparison of statistical, LBP, and multi-resolution analysis features for breast mass classification. J Med Syst 38(9):100CrossRef
Zurück zum Zitat Russakovsky O et al (2014) International journal of computer vision. Kluwer Academic, Boston Russakovsky O et al (2014) International journal of computer vision. Kluwer Academic, Boston
Zurück zum Zitat Samala RK, Chan H-P, Hadjiiski L, Helvie MA, Wei J, Cha K (2016) Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med Phys 43(12):6654–6666CrossRef Samala RK, Chan H-P, Hadjiiski L, Helvie MA, Wei J, Cha K (2016) Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med Phys 43(12):6654–6666CrossRef
Zurück zum Zitat Samala RK, Chan H-P, Hadjiiski LM, Helvie MA, Cha K, Richter C (2017) Multi-task transfer learning deep convolutional neural network: application to computer-aided diagnosis of breast cancer on mammograms. Phys Med Biol 62(23):8894–8908CrossRef Samala RK, Chan H-P, Hadjiiski LM, Helvie MA, Cha K, Richter C (2017) Multi-task transfer learning deep convolutional neural network: application to computer-aided diagnosis of breast cancer on mammograms. Phys Med Biol 62(23):8894–8908CrossRef
Zurück zum Zitat Sharma S, Khanna P (2014) Computer-aided diagnosis of malignant mammograms using Zernike moments and SVM. J Digit Imaging 28(1):77–90CrossRef Sharma S, Khanna P (2014) Computer-aided diagnosis of malignant mammograms using Zernike moments and SVM. J Digit Imaging 28(1):77–90CrossRef
Zurück zum Zitat Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30CrossRef Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30CrossRef
Zurück zum Zitat Skogen K, Ganeshan B, Good C, Critchley G, Miles K (2013) Measurements of heterogeneity in gliomas on computed tomography relationship to tumour grade. J Neurooncol 111(2):213–219CrossRef Skogen K, Ganeshan B, Good C, Critchley G, Miles K (2013) Measurements of heterogeneity in gliomas on computed tomography relationship to tumour grade. J Neurooncol 111(2):213–219CrossRef
Zurück zum Zitat Tajbakhsh N et al (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312CrossRef Tajbakhsh N et al (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312CrossRef
Zurück zum Zitat Tan M, Pu J, Zheng B (2014) Reduction of false-positive recalls using a computerized mammographic image feature analysis scheme. Phys Med Biol 59(15):4357–4373CrossRef Tan M, Pu J, Zheng B (2014) Reduction of false-positive recalls using a computerized mammographic image feature analysis scheme. Phys Med Biol 59(15):4357–4373CrossRef
Zurück zum Zitat Teare P, Fishman M, Benzaquen O, Toledano E, Elnekave E (2017) Malignancy detection on mammography using dual deep convolutional neural networks and genetically discovered false color input enhancement. J Digit Imaging 30(4):499–505CrossRef Teare P, Fishman M, Benzaquen O, Toledano E, Elnekave E (2017) Malignancy detection on mammography using dual deep convolutional neural networks and genetically discovered false color input enhancement. J Digit Imaging 30(4):499–505CrossRef
Zurück zum Zitat Törnberg S et al (2006) Breast cancer incidence and mortality in the Nordic capitals, 1970-1998. Trends related to mammography screening programmes. Acta Oncol 45(5):528–535CrossRef Törnberg S et al (2006) Breast cancer incidence and mortality in the Nordic capitals, 1970-1998. Trends related to mammography screening programmes. Acta Oncol 45(5):528–535CrossRef
Zurück zum Zitat Tosteson ANA et al (2014) Consequences of false-positive screening mammograms. JAMA Intern Med 174(6):954–961CrossRef Tosteson ANA et al (2014) Consequences of false-positive screening mammograms. JAMA Intern Med 174(6):954–961CrossRef
Zurück zum Zitat Wang J, Yang X, Cai H, Tan W, Jin C, Li L (2016) Discrimination of breast cancer with microcalcifications on mammography by deep learning. Sci Rep 6:1–9CrossRef Wang J, Yang X, Cai H, Tan W, Jin C, Li L (2016) Discrimination of breast cancer with microcalcifications on mammography by deep learning. Sci Rep 6:1–9CrossRef
Zurück zum Zitat Zacharaki EI et al (2009) Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 62(6):1609–1618CrossRef Zacharaki EI et al (2009) Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 62(6):1609–1618CrossRef
Metadaten
Titel
Advanced Medical Imaging Analytics in Breast Cancer Diagnosis
verfasst von
Yinlin Fu
Bhavika K. Patel
Teresa Wu
Jing Li
Fei Gao
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-11866-2_13

Neuer Inhalt