Skip to main content
Erschienen in: Microsystem Technologies 1/2020

07.08.2019 | Technical Paper

Advanced numerical analysis for vibration characteristics and ride comfort of ultra-high-speed maglev train

verfasst von: Hue Ha, Jungwan Park, Kyoung-Su Park

Erschienen in: Microsystem Technologies | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Magnetic levitation (maglev) trains are environmentally-friendly, require little maintenance, and allow for mass transportation. For these reasons, the demand for ultra-high-speed maglev trains has been increasing. Maglev trains can be classified with two suspension types, electro dynamic suspension (EDS) and electromagnetic suspension (EMS). EDS-type trains are suitable for ultra-high-speed because levitation suspension gap is over 100 mm compared with levitation suspension gap of 10 mm for EMS. When speed goes faster, it is hard to control the small suspension gap rapidly in EMS type. To analyze the EDS-type maglev train, electromagnetic forces were calculated with the superconducting coils and magnets using 2D analytical model. Based on the calculated forces, the lookup tables for the levitation and guidance force were employed in the total couple-fielded analysis. Ultra-high-speed maglev train was simulated by using the ADAMS multi-body dynamic program. The simulation was carried out with two car body models, rigid and flexible car body. In order to construct flexible car bodies with the modal information, the finite element method was used and they were constructed with the equivalent elements using ANSYS™. The final framework was constructed in MATLAB Simulink, and we co-simulated the dynamics and the electromagnetics with the constructed simulation frame work. To consider disturbances caused by irregularities, random and power spectral density (PSD) were used to analyze the vibrational interaction. As results, the ride comforts for PSD were a little bit worse than the results for random irregularity because the characteristics of PSD irregularity have more low excitation frequencies. The use of PSD inputs and flexible car body models need to be considered to improve the simulation accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmed R, Jun YL, Azhar MF, Junejo NUR (2014) Comprehensive study and review on maglev train system. Appl Mech Mater 615:347–351CrossRef Ahmed R, Jun YL, Azhar MF, Junejo NUR (2014) Comprehensive study and review on maglev train system. Appl Mech Mater 615:347–351CrossRef
Zurück zum Zitat Diana G, Cheli F, Collina A, Corradi R, Melzi S (2002) The development of a numerical model for railway vehicles comfort assessment through comparison with experimental measurements. Veh Syst Dyn 38(3):165–183CrossRef Diana G, Cheli F, Collina A, Corradi R, Melzi S (2002) The development of a numerical model for railway vehicles comfort assessment through comparison with experimental measurements. Veh Syst Dyn 38(3):165–183CrossRef
Zurück zum Zitat Early R, Yoshitomo A, Hiroyuki O (2002) Numerical analysis of the vehicle dynamics of the superconducting maglev system at the Yamanashi test line. In: The 17th international conference on magnetically levitated systems and linear drives (Maglev 2002), Lausanne, 3–5 September 2002 Early R, Yoshitomo A, Hiroyuki O (2002) Numerical analysis of the vehicle dynamics of the superconducting maglev system at the Yamanashi test line. In: The 17th international conference on magnetically levitated systems and linear drives (Maglev 2002), Lausanne, 3–5 September 2002
Zurück zum Zitat Fujie J (1999) An advanced arrangement of the combined propulsion, levitation and guidance system of superconducting Maglev. IEEE Trans Magn 35(5):4049–4051CrossRef Fujie J (1999) An advanced arrangement of the combined propulsion, levitation and guidance system of superconducting Maglev. IEEE Trans Magn 35(5):4049–4051CrossRef
Zurück zum Zitat Fujimoto T, Aiba M, Suzuki H, Umeki T, Nakamura S (2000) Characteristics of electromagnetic force of ground coil for levitation and guidance at the Yamanashi Maglev test line. Q Rep RTRI 41(2):63–67CrossRef Fujimoto T, Aiba M, Suzuki H, Umeki T, Nakamura S (2000) Characteristics of electromagnetic force of ground coil for levitation and guidance at the Yamanashi Maglev test line. Q Rep RTRI 41(2):63–67CrossRef
Zurück zum Zitat Guangwei S, Meisinger I R, Gang S (2007) Modeling and simulation of Shanghai maglev train transrapid with random track irregularities. Sonderdruck Schriftenreihe der Georg-Simon-Ohm-FachhochschuleNürnberg 39:11S Guangwei S, Meisinger I R, Gang S (2007) Modeling and simulation of Shanghai maglev train transrapid with random track irregularities. Sonderdruck Schriftenreihe der Georg-Simon-Ohm-FachhochschuleNürnberg 39:11S
Zurück zum Zitat Hoshino H, Suzuki E, Watanabe K (2008) Reduction of vibrations in Maglev vehicles using active primary and secondary suspension control. Q Rep RTRI 49(2):113–118CrossRef Hoshino H, Suzuki E, Watanabe K (2008) Reduction of vibrations in Maglev vehicles using active primary and secondary suspension control. Q Rep RTRI 49(2):113–118CrossRef
Zurück zum Zitat Hoshino H, Suzuki E, Yonezu T, Watanabe K (2012) Examination of vehicle motion characteristics of a Maglev train set using a reduced-scale model experiment apparatus. Q Rep RTRI 53(1):52–58CrossRef Hoshino H, Suzuki E, Yonezu T, Watanabe K (2012) Examination of vehicle motion characteristics of a Maglev train set using a reduced-scale model experiment apparatus. Q Rep RTRI 53(1):52–58CrossRef
Zurück zum Zitat Kim IK, Kratz R, Doll D (2002) Technology development for US Urban Maglev. In: Maglev 2002 conference, Lusanne, Switzerland Kim IK, Kratz R, Doll D (2002) Technology development for US Urban Maglev. In: Maglev 2002 conference, Lusanne, Switzerland
Zurück zum Zitat Kim D, Park N, Yoo J, Lim S (2018) Transient EM force estimation for EDS type maglev using 3D FE model. In: Proceedings of the Maglev 2018 conference Kim D, Park N, Yoo J, Lim S (2018) Transient EM force estimation for EDS type maglev using 3D FE model. In: Proceedings of the Maglev 2018 conference
Zurück zum Zitat Lee HW, Kim KC, Lee J (2006) Review of maglev train technologies. IEEE Trans Magn 42(7):1917–1925CrossRef Lee HW, Kim KC, Lee J (2006) Review of maglev train technologies. IEEE Trans Magn 42(7):1917–1925CrossRef
Zurück zum Zitat Miyamoto S, Osada Y, Katsumi Y, Tsutomu F (2004) The Status of the running tests of JR-Maglev. Maglev 1:60–64 Miyamoto S, Osada Y, Katsumi Y, Tsutomu F (2004) The Status of the running tests of JR-Maglev. Maglev 1:60–64
Zurück zum Zitat Ohsaki H, Bando S (2006) Numerical analysis of elastic vibration of superconducting maglev vehicles. In: MAGLEV’2006: the 19th international conference on magnetically levitated systems and linear drives transrapid International GmbH und company KGMaxBoglBauunternehmung GmbH und Company KGDeutsche Bahn AGIABG mbHNexans Deutschland GmbHDornier Consulting GmbH Ohsaki H, Bando S (2006) Numerical analysis of elastic vibration of superconducting maglev vehicles. In: MAGLEV’2006: the 19th international conference on magnetically levitated systems and linear drives transrapid International GmbH und company KGMaxBoglBauunternehmung GmbH und Company KGDeutsche Bahn AGIABG mbHNexans Deutschland GmbHDornier Consulting GmbH
Zurück zum Zitat Ohsaki H, Early RW, Suzuki E (2000) Numerical simulation of the vehicle dynamics of the superconducting maglev system. In: The 16th international conference on magnetically levitated systems and linear drives, Rio de Janeiro, pp 230–235 Ohsaki H, Early RW, Suzuki E (2000) Numerical simulation of the vehicle dynamics of the superconducting maglev system. In: The 16th international conference on magnetically levitated systems and linear drives, Rio de Janeiro, pp 230–235
Zurück zum Zitat Seki A, Osada Y, Kitano JI, Miyamoto S (1996) Dynamics of the bogie of a maglev system with guideway irregularities. IEEE Trans Magn 32(5):5043–5045CrossRef Seki A, Osada Y, Kitano JI, Miyamoto S (1996) Dynamics of the bogie of a maglev system with guideway irregularities. IEEE Trans Magn 32(5):5043–5045CrossRef
Zurück zum Zitat Shi J, Fang WS, Wang YJ, Zhao Y (2014) Measurements and analysis of track irregularities on high speed maglev lines. J Zhejiang Univ Sci A 15(6):385–394CrossRef Shi J, Fang WS, Wang YJ, Zhao Y (2014) Measurements and analysis of track irregularities on high speed maglev lines. J Zhejiang Univ Sci A 15(6):385–394CrossRef
Zurück zum Zitat Shirakuni N, Endo Y, Takahashi K, Yamamoto K (2002) Overview of new vehicles for the Yamanashi Maglev Test Line. In: Proceedings of the 17th international conference on magnetically levitated systems (Maglev 2002) Shirakuni N, Endo Y, Takahashi K, Yamamoto K (2002) Overview of new vehicles for the Yamanashi Maglev Test Line. In: Proceedings of the 17th international conference on magnetically levitated systems (Maglev 2002)
Zurück zum Zitat Song MK, Fujino Y (2008) Dynamic analysis of guideway structures by considering ultra high-speed Maglev train-guideway interaction. Struct Eng Mech 29(4):355–380CrossRef Song MK, Fujino Y (2008) Dynamic analysis of guideway structures by considering ultra high-speed Maglev train-guideway interaction. Struct Eng Mech 29(4):355–380CrossRef
Zurück zum Zitat Suzuki E, Shirasaki J, Watanabe K, Hoshino H, Nagai M (2008) Comparison of methods to reduce vibrations in superconducting maglev vehicles by primary suspension control. J Mech Syst Transp Logist 1(1):3–13CrossRef Suzuki E, Shirasaki J, Watanabe K, Hoshino H, Nagai M (2008) Comparison of methods to reduce vibrations in superconducting maglev vehicles by primary suspension control. J Mech Syst Transp Logist 1(1):3–13CrossRef
Zurück zum Zitat Tanaka M, Aiba M, Suzuki M (2007) Development of electromagnetic vibration test apparatus for ground coils applied to maglev system. Q Rep RTRI 48(2):110–114CrossRef Tanaka M, Aiba M, Suzuki M (2007) Development of electromagnetic vibration test apparatus for ground coils applied to maglev system. Q Rep RTRI 48(2):110–114CrossRef
Zurück zum Zitat Tomioka T, Suzuki Y, Takigami T (2003) Three-dimensional flexural vibration of lightweight railway vehicle carbody and a new analytical method for flexural vibration. Q Rep RTRI 44(1):15–21CrossRef Tomioka T, Suzuki Y, Takigami T (2003) Three-dimensional flexural vibration of lightweight railway vehicle carbody and a new analytical method for flexural vibration. Q Rep RTRI 44(1):15–21CrossRef
Zurück zum Zitat Tsuruga H (1992) Superconductive maglev system on the Yamanashi maglev test line. SAE Trans 101:196–201 Tsuruga H (1992) Superconductive maglev system on the Yamanashi maglev test line. SAE Trans 101:196–201
Zurück zum Zitat Yaghoubi H, Ziari H (2010) Development of a maglev vehicle/guideway system interaction model and comparison of the guideway structural analysis with railway bridge structures. J Transp Eng 137(2):140–154CrossRef Yaghoubi H, Ziari H (2010) Development of a maglev vehicle/guideway system interaction model and comparison of the guideway structural analysis with railway bridge structures. J Transp Eng 137(2):140–154CrossRef
Zurück zum Zitat Yamamoto K, Kozuma Y, Tagawa N, Hosaka S, Tsunoda H (2004) Improving maglev vehicle characteristics for the Yamanashi test line. Q Rep RTRI 45(1):7–12CrossRef Yamamoto K, Kozuma Y, Tagawa N, Hosaka S, Tsunoda H (2004) Improving maglev vehicle characteristics for the Yamanashi test line. Q Rep RTRI 45(1):7–12CrossRef
Zurück zum Zitat Yonezu T, Watanabe K, Suzuki E, Sasakawa T (2017) Study on electromagnetic force characteristics acting on levitation/guidance coils of a superconducting Maglev vehicle system. IEEE Trans Magn 53(11):1–5CrossRef Yonezu T, Watanabe K, Suzuki E, Sasakawa T (2017) Study on electromagnetic force characteristics acting on levitation/guidance coils of a superconducting Maglev vehicle system. IEEE Trans Magn 53(11):1–5CrossRef
Zurück zum Zitat Zhang YW, Zhao Y, Zhang YH, Lin JH, He XW (2013) Riding comfort optimization of railway trains based on pseudo-excitation method and symplectic method. J Sound Vib 332(21):5255–5270CrossRef Zhang YW, Zhao Y, Zhang YH, Lin JH, He XW (2013) Riding comfort optimization of railway trains based on pseudo-excitation method and symplectic method. J Sound Vib 332(21):5255–5270CrossRef
Zurück zum Zitat Zhao CF, Zhai WM (2002) Maglev vehicle/guideway vertical random response and ride quality. Veh Syst Dyn 38(3):185–210CrossRef Zhao CF, Zhai WM (2002) Maglev vehicle/guideway vertical random response and ride quality. Veh Syst Dyn 38(3):185–210CrossRef
Zurück zum Zitat Zhou J, Goodall R, Ren L, Zhang H (2009) Influences of car body vertical flexibility on ride quality of passenger railway vehicles. Proc Inst Mech Eng Part F J Rail Rapid Transit 223(5):461–471CrossRef Zhou J, Goodall R, Ren L, Zhang H (2009) Influences of car body vertical flexibility on ride quality of passenger railway vehicles. Proc Inst Mech Eng Part F J Rail Rapid Transit 223(5):461–471CrossRef
Metadaten
Titel
Advanced numerical analysis for vibration characteristics and ride comfort of ultra-high-speed maglev train
verfasst von
Hue Ha
Jungwan Park
Kyoung-Su Park
Publikationsdatum
07.08.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 1/2020
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-019-04540-x

Weitere Artikel der Ausgabe 1/2020

Microsystem Technologies 1/2020 Zur Ausgabe

Neuer Inhalt