Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 18/2019

26.08.2019 | Review

Advancement on suppression of energy dissipation of percolative polymer nanocomposites: a review on graphene based

verfasst von: U. O. Uyor, A. P. I. Popoola, O. M. Popoola, V. S. Aigbodion

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 18/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Percolative polymer nanocomposites (PPNC) such as polymers reinforced with graphene and/or carbon nanotubes have attracted research attention on the effort to improve the energy storage capacity of polymeric materials. Such nanocomposites often associated with high energy dissipation and dielectric loss. Recently, research interests have shifted from increasing dielectric constant of PPNC to the reduction of dielectric loss associated with such nanocomposites. Various means have been employed in the suppression of energy dissipation and dielectric loss of PPNC via covalent and non-covalent modification of percolative nanofillers (PnF). For instance, chemical and mechanical (physical) techniques of insulating PnF have been employed in the reduction of current leakage, high mobility of charge carriers and direct contact of PnF in the polymer matrix. A significant reduction in the energy dissipation of PPNC has been achieved so far. However, there is still a need for further reduction of energy dissipation associated with such nanocomposites to realize their practical applications as dielectric energy storage materials. Therefore, this review summarised the various techniques employed by various studies in the reduction of energy dissipation associated with PPNC and results achieved using the techniques. The review was concluded with present challenges and the way forward to further address the challenges facing PPNC as dielectric energy storage materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat U.O. Uyor, A.P. Popoola, O. Popoola, V.S. Aigbodion, Energy storage and loss capacity of graphene-reinforced poly (vinylidene fluoride) nanocomposites from electrical and dielectric properties perspective: a review. Adv. Polym. Technol. 37, 2838–2858 (2018) U.O. Uyor, A.P. Popoola, O. Popoola, V.S. Aigbodion, Energy storage and loss capacity of graphene-reinforced poly (vinylidene fluoride) nanocomposites from electrical and dielectric properties perspective: a review. Adv. Polym. Technol. 37, 2838–2858 (2018)
3.
Zurück zum Zitat C. Garzón, H. Palza, Electrical behavior of polypropylene composites melt mixed with carbon-based particles: effect of the kind of particle and annealing process. Compos. Sci. Technol. 99, 117–123 (2014) C. Garzón, H. Palza, Electrical behavior of polypropylene composites melt mixed with carbon-based particles: effect of the kind of particle and annealing process. Compos. Sci. Technol. 99, 117–123 (2014)
7.
Zurück zum Zitat K. Chrissafis, D. Bikiaris, Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim. Acta 523(1–2), 1–24 (2011) K. Chrissafis, D. Bikiaris, Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim. Acta 523(1–2), 1–24 (2011)
8.
Zurück zum Zitat R. Liang, H. Cao, D. Qian, J. Zhang, M. Qu, Designed synthesis of SnO2-polyaniline-reduced graphene oxide nanocomposites as an anode material for lithium-ion batteries. J. Mater. Chem. 21(44), 17654–17657 (2011) R. Liang, H. Cao, D. Qian, J. Zhang, M. Qu, Designed synthesis of SnO2-polyaniline-reduced graphene oxide nanocomposites as an anode material for lithium-ion batteries. J. Mater. Chem. 21(44), 17654–17657 (2011)
9.
Zurück zum Zitat Y. Yang, C. Wang, B. Yue, S. Gambhir, C.O. Too, G.G. Wallace, Electrochemically synthesized polypyrrole/graphene composite film for lithium batteries. Adv. Energy Mater. 2(2), 266–272 (2012) Y. Yang, C. Wang, B. Yue, S. Gambhir, C.O. Too, G.G. Wallace, Electrochemically synthesized polypyrrole/graphene composite film for lithium batteries. Adv. Energy Mater. 2(2), 266–272 (2012)
10.
Zurück zum Zitat L. Jin, G. Wang, X. Li, L. Li, Poly (2, 5-dimercapto-1, 3, 4-thiadiazole)/sulfonated graphene composite as cathode material for rechargeable lithium batteries. J. Appl. Electrochem. 41(4), 377–382 (2011) L. Jin, G. Wang, X. Li, L. Li, Poly (2, 5-dimercapto-1, 3, 4-thiadiazole)/sulfonated graphene composite as cathode material for rechargeable lithium batteries. J. Appl. Electrochem. 41(4), 377–382 (2011)
11.
Zurück zum Zitat H. Lee, J.K. Yoo, J.H. Park, J.H. Kim, K. Kang, Y.S. Jung, A stretchable polymer-carbon nanotube composite electrode for flexible lithium-ion batteries: porosity engineering by controlled phase separation. Adv. Energy Mater. 2(8), 976–982 (2012) H. Lee, J.K. Yoo, J.H. Park, J.H. Kim, K. Kang, Y.S. Jung, A stretchable polymer-carbon nanotube composite electrode for flexible lithium-ion batteries: porosity engineering by controlled phase separation. Adv. Energy Mater. 2(8), 976–982 (2012)
12.
Zurück zum Zitat J. Bae, Fabrication of carbon microcapsules containing silicon nanoparticles–carbon nanotubes nanocomposite by sol–gel method for anode in lithium ion battery. J. Solid State Chem. 184(7), 1749–1755 (2011) J. Bae, Fabrication of carbon microcapsules containing silicon nanoparticles–carbon nanotubes nanocomposite by sol–gel method for anode in lithium ion battery. J. Solid State Chem. 184(7), 1749–1755 (2011)
13.
Zurück zum Zitat K.S. Lee, Y. Lee, J.Y. Lee, J.H. Ahn, J.H. Park, Flexible and platinum-free dye-sensitized solar cells with conducting-polymer-coated graphene counter electrodes. Chemsuschem 5(2), 379–382 (2012) K.S. Lee, Y. Lee, J.Y. Lee, J.H. Ahn, J.H. Park, Flexible and platinum-free dye-sensitized solar cells with conducting-polymer-coated graphene counter electrodes. Chemsuschem 5(2), 379–382 (2012)
14.
Zurück zum Zitat S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, M. Chhowalla, Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4(6), 3169–3174 (2010) S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, M. Chhowalla, Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4(6), 3169–3174 (2010)
15.
Zurück zum Zitat J. Velten, A.J. Mozer, D. Li, D. Officer, G. Wallace, R. Baughman, A. Zakhidov, Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells. Nanotechnology 23(8), 085201 (2012) J. Velten, A.J. Mozer, D. Li, D. Officer, G. Wallace, R. Baughman, A. Zakhidov, Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells. Nanotechnology 23(8), 085201 (2012)
16.
Zurück zum Zitat Y.-C. Cao, C. Xu, X. Wu, X. Wang, L. Xing, K. Scott, A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells. J. Power Sources 196(20), 8377–8382 (2011) Y.-C. Cao, C. Xu, X. Wu, X. Wang, L. Xing, K. Scott, A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells. J. Power Sources 196(20), 8377–8382 (2011)
17.
Zurück zum Zitat Y.-S. Ye, C.-Y. Tseng, W.-C. Shen, J.-S. Wang, K.-J. Chen, M.-Y. Cheng, J. Rick, Y.-J. Huang, F.-C. Chang, B.-J. Hwang, A new graphene-modified protic ionic liquid-based composite membrane for solid polymer electrolytes. J. Mater. Chem. 21(28), 10448–10453 (2011) Y.-S. Ye, C.-Y. Tseng, W.-C. Shen, J.-S. Wang, K.-J. Chen, M.-Y. Cheng, J. Rick, Y.-J. Huang, F.-C. Chang, B.-J. Hwang, A new graphene-modified protic ionic liquid-based composite membrane for solid polymer electrolytes. J. Mater. Chem. 21(28), 10448–10453 (2011)
18.
Zurück zum Zitat I. Nicotera, C. Simari, L. Coppola, P. Zygouri, D. Gournis, S. Brutti, F.D. Minuto, A. Aricò, D. Sebastian, V. Baglio, Sulfonated graphene oxide platelets in Nafion nanocomposite membrane: advantages for application in direct methanol fuel cells. J. Phys. Chem. C 118(42), 24357–24368 (2014) I. Nicotera, C. Simari, L. Coppola, P. Zygouri, D. Gournis, S. Brutti, F.D. Minuto, A. Aricò, D. Sebastian, V. Baglio, Sulfonated graphene oxide platelets in Nafion nanocomposite membrane: advantages for application in direct methanol fuel cells. J. Phys. Chem. C 118(42), 24357–24368 (2014)
19.
Zurück zum Zitat G. Gnana Kumar, C.J. Kirubaharan, S. Udhayakumar, C. Karthikeyan, K.S. Nahm, Conductive polymer/graphene supported platinum nanoparticles as anode catalysts for the extended power generation of microbial fuel cells. Ind. Eng. Chem. Res. 53(43), 16883–16893 (2014) G. Gnana Kumar, C.J. Kirubaharan, S. Udhayakumar, C. Karthikeyan, K.S. Nahm, Conductive polymer/graphene supported platinum nanoparticles as anode catalysts for the extended power generation of microbial fuel cells. Ind. Eng. Chem. Res. 53(43), 16883–16893 (2014)
20.
Zurück zum Zitat Y.-S. Ye, M.-Y. Cheng, X.-L. Xie, J. Rick, Y.-J. Huang, F.-C. Chang, B.-J. Hwang, Alkali doped polyvinyl alcohol/graphene electrolyte for direct methanol alkaline fuel cells. J. Power Sources 239, 424–432 (2013) Y.-S. Ye, M.-Y. Cheng, X.-L. Xie, J. Rick, Y.-J. Huang, F.-C. Chang, B.-J. Hwang, Alkali doped polyvinyl alcohol/graphene electrolyte for direct methanol alkaline fuel cells. J. Power Sources 239, 424–432 (2013)
21.
Zurück zum Zitat Song L, Zhamu A, Guo J, Jang BZ (2009) Nano-scaled graphene plate nanocomposites for supercapacitor electrodes. Google Patents Song L, Zhamu A, Guo J, Jang BZ (2009) Nano-scaled graphene plate nanocomposites for supercapacitor electrodes. Google Patents
22.
Zurück zum Zitat C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010) C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010)
23.
Zurück zum Zitat S. Sahoo, S. Dhibar, G. Hatui, P. Bhattacharya, C.K. Das, Graphene/polypyrrole nanofiber nanocomposite as electrode material for electrochemical supercapacitor. Polymer 54(3), 1033–1042 (2013) S. Sahoo, S. Dhibar, G. Hatui, P. Bhattacharya, C.K. Das, Graphene/polypyrrole nanofiber nanocomposite as electrode material for electrochemical supercapacitor. Polymer 54(3), 1033–1042 (2013)
24.
Zurück zum Zitat A.K. Mishra, S. Ramaprabhu, Functionalized graphene-based nanocomposites for supercapacitor application. J. Phys. Chem. C 115(29), 14006–14013 (2011) A.K. Mishra, S. Ramaprabhu, Functionalized graphene-based nanocomposites for supercapacitor application. J. Phys. Chem. C 115(29), 14006–14013 (2011)
25.
Zurück zum Zitat S. Ramaprabhu, Poly (p-phenylenediamine)/graphene nanocomposites for supercapacitor applications. J. Mater. Chem. 22(36), 18775–18783 (2012) S. Ramaprabhu, Poly (p-phenylenediamine)/graphene nanocomposites for supercapacitor applications. J. Mater. Chem. 22(36), 18775–18783 (2012)
26.
Zurück zum Zitat L. Lai, H. Yang, L. Wang, B.K. Teh, J. Zhong, H. Chou, L. Chen, W. Chen, Z. Shen, R.S. Ruoff, Preparation of supercapacitor electrodes through selection of graphene surface functionalities. ACS Nano 6(7), 5941–5951 (2012) L. Lai, H. Yang, L. Wang, B.K. Teh, J. Zhong, H. Chou, L. Chen, W. Chen, Z. Shen, R.S. Ruoff, Preparation of supercapacitor electrodes through selection of graphene surface functionalities. ACS Nano 6(7), 5941–5951 (2012)
27.
Zurück zum Zitat Uyor U, Popoola O (2018) Improved energy storage performance of insulated graphene/polymer nanocomposites. In: 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), 2018. IEEE, pp 189–193 Uyor U, Popoola O (2018) Improved energy storage performance of insulated graphene/polymer nanocomposites. In: 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), 2018. IEEE, pp 189–193
28.
Zurück zum Zitat Uyor U, Popoola O (2018) Experimental study of capacitance and thermal stability of polymer based composites dielectric material for electrostatic capacitor applications. In: 2018 IEEE PES/IAS PowerAfrica, 2018. IEEE, pp 503–508 Uyor U, Popoola O (2018) Experimental study of capacitance and thermal stability of polymer based composites dielectric material for electrostatic capacitor applications. In: 2018 IEEE PES/IAS PowerAfrica, 2018. IEEE, pp 503–508
32.
Zurück zum Zitat U. Uyor, O. Popoola, V. Aigbodion, Mechanically insulated graphene/polymer nanocomposites with improved dielectric performance and energy storage capacity. Polym. Sci. Ser. A 60(6), 875–885 (2018) U. Uyor, O. Popoola, V. Aigbodion, Mechanically insulated graphene/polymer nanocomposites with improved dielectric performance and energy storage capacity. Polym. Sci. Ser. A 60(6), 875–885 (2018)
33.
Zurück zum Zitat S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282 (2006) S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282 (2006)
34.
Zurück zum Zitat M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008) M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008)
36.
Zurück zum Zitat A. Omah, B. Okorie, E. Omah, I. Ezema, V. Aigbodion, P. Offor, Measurement of dielectric properties of polymer matrix composites developed from cow bone powder. Int. J. Adv. Manuf. Technol. 88(1–4), 325–335 (2017) A. Omah, B. Okorie, E. Omah, I. Ezema, V. Aigbodion, P. Offor, Measurement of dielectric properties of polymer matrix composites developed from cow bone powder. Int. J. Adv. Manuf. Technol. 88(1–4), 325–335 (2017)
39.
Zurück zum Zitat H. Windlass, P.M. Raj, D. Balaraman, S.K. Bhattacharya, R.R. Tummala, Polymer-ceramic nanocomposite capacitors for system-on-package (SOP) applications. IEEE Trans. Adv. Packag. 26(1), 10–16 (2003) H. Windlass, P.M. Raj, D. Balaraman, S.K. Bhattacharya, R.R. Tummala, Polymer-ceramic nanocomposite capacitors for system-on-package (SOP) applications. IEEE Trans. Adv. Packag. 26(1), 10–16 (2003)
40.
Zurück zum Zitat R. Popielarz, C. Chiang, R. Nozaki, J. Obrzut, Dielectric properties of polymer/ferroelectric ceramic composites from 100 Hz to 10 GHz. Macromolecules 34(17), 5910–5915 (2001) R. Popielarz, C. Chiang, R. Nozaki, J. Obrzut, Dielectric properties of polymer/ferroelectric ceramic composites from 100 Hz to 10 GHz. Macromolecules 34(17), 5910–5915 (2001)
41.
Zurück zum Zitat M. Arbatti, X. Shan, Z.Y. Cheng, Ceramic–polymer composites with high dielectric constant. Adv. Mater. 19(10), 1369–1372 (2007) M. Arbatti, X. Shan, Z.Y. Cheng, Ceramic–polymer composites with high dielectric constant. Adv. Mater. 19(10), 1369–1372 (2007)
42.
Zurück zum Zitat Z.M. Dang, T. Zhou, S.H. Yao, J.K. Yuan, J.W. Zha, H.T. Song, J.Y. Li, Q. Chen, W.T. Yang, J. Bai, Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv. Mater. 21(20), 2077–2082 (2009) Z.M. Dang, T. Zhou, S.H. Yao, J.K. Yuan, J.W. Zha, H.T. Song, J.Y. Li, Q. Chen, W.T. Yang, J. Bai, Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv. Mater. 21(20), 2077–2082 (2009)
43.
Zurück zum Zitat H.M. Jung, J.-H. Kang, S.Y. Yang, J.C. Won, Y.S. Kim, Barium titanate nanoparticles with diblock copolymer shielding layers for high-energy density nanocomposites. Chem. Mater. 22(2), 450–456 (2009) H.M. Jung, J.-H. Kang, S.Y. Yang, J.C. Won, Y.S. Kim, Barium titanate nanoparticles with diblock copolymer shielding layers for high-energy density nanocomposites. Chem. Mater. 22(2), 450–456 (2009)
44.
Zurück zum Zitat D. Ma, T.A. Hugener, R.W. Siegel, A. Christerson, E. Mårtensson, C. Önneby, L.S. Schadler, Influence of nanoparticle surface modification on the electrical behaviour of polyethylene nanocomposites. Nanotechnology 16(6), 724 (2005) D. Ma, T.A. Hugener, R.W. Siegel, A. Christerson, E. Mårtensson, C. Önneby, L.S. Schadler, Influence of nanoparticle surface modification on the electrical behaviour of polyethylene nanocomposites. Nanotechnology 16(6), 724 (2005)
46.
Zurück zum Zitat Y. Li, S.C. Tjong, R. Li, Electrical conductivity and dielectric response of poly (vinylidene fluoride)–graphite nanoplatelet composites. Synth. Met. 160(17), 1912–1919 (2010) Y. Li, S.C. Tjong, R. Li, Electrical conductivity and dielectric response of poly (vinylidene fluoride)–graphite nanoplatelet composites. Synth. Met. 160(17), 1912–1919 (2010)
49.
Zurück zum Zitat Z.M. Dang, M.S. Zheng, J.W. Zha, 1D/2D carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications. Small 12(13), 1688–1701 (2016) Z.M. Dang, M.S. Zheng, J.W. Zha, 1D/2D carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications. Small 12(13), 1688–1701 (2016)
50.
Zurück zum Zitat H. Li, Z. Chen, L. Liu, J. Chen, M. Jiang, C. Xiong, Poly (vinyl pyrrolidone)-coated graphene/poly (vinylidene fluoride) composite films with high dielectric permittivity and low loss. Compos. Sci. Technol. 121, 49–55 (2015) H. Li, Z. Chen, L. Liu, J. Chen, M. Jiang, C. Xiong, Poly (vinyl pyrrolidone)-coated graphene/poly (vinylidene fluoride) composite films with high dielectric permittivity and low loss. Compos. Sci. Technol. 121, 49–55 (2015)
51.
Zurück zum Zitat J. Guan, C. Xing, Y. Wang, Y. Li, J. Li, Poly (vinylidene fluoride) dielectric composites with both ionic nanoclusters and well dispersed graphene oxide. Compos. Sci. Technol. 138, 98–105 (2017) J. Guan, C. Xing, Y. Wang, Y. Li, J. Li, Poly (vinylidene fluoride) dielectric composites with both ionic nanoclusters and well dispersed graphene oxide. Compos. Sci. Technol. 138, 98–105 (2017)
53.
Zurück zum Zitat Y. Zhao, L. Luo, H. Tang, Z. Zhou, G.X. Chen, Q. Li, Preparation of high-k composites with low dielectric loss based on the double-layer coaxial structure of inorganic/polymer. J. Appl. Polym. Sci. 135(21), 46299 (2018) Y. Zhao, L. Luo, H. Tang, Z. Zhou, G.X. Chen, Q. Li, Preparation of high-k composites with low dielectric loss based on the double-layer coaxial structure of inorganic/polymer. J. Appl. Polym. Sci. 135(21), 46299 (2018)
58.
Zurück zum Zitat Glatkowski PJ, Arthur DJ (2004) Nanocomposite dielectrics. Google Patents Glatkowski PJ, Arthur DJ (2004) Nanocomposite dielectrics. Google Patents
61.
Zurück zum Zitat K. Han, Q. Li, Z. Chen, M.R. Gadinski, L. Dong, C. Xiong, Q. Wang, Suppression of energy dissipation and enhancement of breakdown strength in ferroelectric polymer–graphene percolative composites. J. Mater. Chem. C 1(42), 7034 (2013). https://doi.org/10.1039/c3tc31556h CrossRef K. Han, Q. Li, Z. Chen, M.R. Gadinski, L. Dong, C. Xiong, Q. Wang, Suppression of energy dissipation and enhancement of breakdown strength in ferroelectric polymer–graphene percolative composites. J. Mater. Chem. C 1(42), 7034 (2013). https://​doi.​org/​10.​1039/​c3tc31556h CrossRef
62.
Zurück zum Zitat Y.-J. Wan, P.-L. Zhu, S.-H. Yu, W.-H. Yang, R. Sun, C.-P. Wong, W.-H. Liao, Barium titanate coated and thermally reduced graphene oxide towards high dielectric constant and low loss of polymeric composites. Compos. Sci. Technol. 141, 48–55 (2017) Y.-J. Wan, P.-L. Zhu, S.-H. Yu, W.-H. Yang, R. Sun, C.-P. Wong, W.-H. Liao, Barium titanate coated and thermally reduced graphene oxide towards high dielectric constant and low loss of polymeric composites. Compos. Sci. Technol. 141, 48–55 (2017)
63.
Zurück zum Zitat T. Ramanathan, H. Liu, L. Brinson, Functionalized SWNT/polymer nanocomposites for dramatic property improvement. J. Polym. Sci. B 43(17), 2269–2279 (2005) T. Ramanathan, H. Liu, L. Brinson, Functionalized SWNT/polymer nanocomposites for dramatic property improvement. J. Polym. Sci. B 43(17), 2269–2279 (2005)
64.
Zurück zum Zitat D. Wang, Y. Bao, J.-W. Zha, J. Zhao, Z.-M. Dang, G.-H. Hu, Improved dielectric properties of nanocomposites based on poly (vinylidene fluoride) and poly (vinyl alcohol)-functionalized graphene. ACS Appl. Mater. Interfaces 4(11), 6273–6279 (2012) D. Wang, Y. Bao, J.-W. Zha, J. Zhao, Z.-M. Dang, G.-H. Hu, Improved dielectric properties of nanocomposites based on poly (vinylidene fluoride) and poly (vinyl alcohol)-functionalized graphene. ACS Appl. Mater. Interfaces 4(11), 6273–6279 (2012)
66.
Zurück zum Zitat J. Park, M. Yan, Covalent functionalization of graphene with reactive intermediates. Acc. Chem. Res. 46(1), 181–189 (2012) J. Park, M. Yan, Covalent functionalization of graphene with reactive intermediates. Acc. Chem. Res. 46(1), 181–189 (2012)
67.
Zurück zum Zitat H. Yang, F. Li, C. Shan, D. Han, Q. Zhang, L. Niu, A. Ivaska, Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J. Mater. Chem. 19(26), 4632–4638 (2009) H. Yang, F. Li, C. Shan, D. Han, Q. Zhang, L. Niu, A. Ivaska, Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J. Mater. Chem. 19(26), 4632–4638 (2009)
68.
Zurück zum Zitat X. Wang, W. Xing, P. Zhang, L. Song, H. Yang, Y. Hu, Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites. Compos. Sci. Technol. 72(6), 737–743 (2012) X. Wang, W. Xing, P. Zhang, L. Song, H. Yang, Y. Hu, Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites. Compos. Sci. Technol. 72(6), 737–743 (2012)
69.
Zurück zum Zitat D. Wang, T. Zhou, J.-W. Zha, J. Zhao, C.-Y. Shi, Z.-M. Dang, Functionalized graphene–BaTiO3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold. J. Mater. Chem. A 1(20), 6162–6168 (2013). https://doi.org/10.1039/c3ta10460e CrossRef D. Wang, T. Zhou, J.-W. Zha, J. Zhao, C.-Y. Shi, Z.-M. Dang, Functionalized graphene–BaTiO3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold. J. Mater. Chem. A 1(20), 6162–6168 (2013). https://​doi.​org/​10.​1039/​c3ta10460e CrossRef
70.
Zurück zum Zitat H. Bai, Y. Xu, L. Zhao, C. Li, G. Shi, Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem. Commun. 13, 1667–1669 (2009) H. Bai, Y. Xu, L. Zhao, C. Li, G. Shi, Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem. Commun. 13, 1667–1669 (2009)
71.
Zurück zum Zitat D. Parviz, S. Das, H.T. Ahmed, F. Irin, S. Bhattacharia, M.J. Green, Dispersions of non-covalently functionalized graphene with minimal stabilizer. ACS Nano 6(10), 8857–8867 (2012) D. Parviz, S. Das, H.T. Ahmed, F. Irin, S. Bhattacharia, M.J. Green, Dispersions of non-covalently functionalized graphene with minimal stabilizer. ACS Nano 6(10), 8857–8867 (2012)
72.
Zurück zum Zitat K. Jo, T. Lee, H.J. Choi, J.H. Park, D.J. Lee, D.W. Lee, B.-S. Kim, Stable aqueous dispersion of reduced graphene nanosheets via non-covalent functionalization with conducting polymers and application in transparent electrodes. Langmuir 27(5), 2014–2018 (2011) K. Jo, T. Lee, H.J. Choi, J.H. Park, D.J. Lee, D.W. Lee, B.-S. Kim, Stable aqueous dispersion of reduced graphene nanosheets via non-covalent functionalization with conducting polymers and application in transparent electrodes. Langmuir 27(5), 2014–2018 (2011)
73.
Zurück zum Zitat Y.-L. Zhao, J.F. Stoddart, Noncovalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res. 42(8), 1161–1171 (2009) Y.-L. Zhao, J.F. Stoddart, Noncovalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res. 42(8), 1161–1171 (2009)
74.
Zurück zum Zitat P. Bilalis, D. Katsigiannopoulos, A. Avgeropoulos, G. Sakellariou, Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv. 4(6), 2911–2934 (2014) P. Bilalis, D. Katsigiannopoulos, A. Avgeropoulos, G. Sakellariou, Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv. 4(6), 2911–2934 (2014)
75.
Zurück zum Zitat R.J. Chen, Y. Zhang, D. Wang, H. Dai, Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123(16), 3838–3839 (2001) R.J. Chen, Y. Zhang, D. Wang, H. Dai, Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123(16), 3838–3839 (2001)
78.
Zurück zum Zitat M. Chen, J. Yin, R. Jin, L. Yao, B. Su, Q. Lei, Dielectric and mechanical properties and thermal stability of polyimide–graphene oxide composite films. Thin Solid Films 584, 232–237 (2015) M. Chen, J. Yin, R. Jin, L. Yao, B. Su, Q. Lei, Dielectric and mechanical properties and thermal stability of polyimide–graphene oxide composite films. Thin Solid Films 584, 232–237 (2015)
79.
Zurück zum Zitat D.-W. Wang, F. Li, J. Zhao, W. Ren, Z.-G. Chen, J. Tan, Z.-S. Wu, I. Gentle, G.Q. Lu, H.-M. Cheng, Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3(7), 1745–1752 (2009) D.-W. Wang, F. Li, J. Zhao, W. Ren, Z.-G. Chen, J. Tan, Z.-S. Wu, I. Gentle, G.Q. Lu, H.-M. Cheng, Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3(7), 1745–1752 (2009)
80.
Zurück zum Zitat Y. Huang, Y. Qin, Y. Zhou, H. Niu, Z.-Z. Yu, J.-Y. Dong, Polypropylene/graphene oxide nanocomposites prepared by in situ Ziegler-Natta polymerization. Chem. Mater. 22(13), 4096–4102 (2010) Y. Huang, Y. Qin, Y. Zhou, H. Niu, Z.-Z. Yu, J.-Y. Dong, Polypropylene/graphene oxide nanocomposites prepared by in situ Ziegler-Natta polymerization. Chem. Mater. 22(13), 4096–4102 (2010)
81.
Zurück zum Zitat X. Wang, Y. Hu, L. Song, H. Yang, W. Xing, H. Lu, In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J. Mater. Chem. 21(12), 4222–4227 (2011) X. Wang, Y. Hu, L. Song, H. Yang, W. Xing, H. Lu, In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J. Mater. Chem. 21(12), 4222–4227 (2011)
82.
Zurück zum Zitat Z. Xu, C. Gao, In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 43(16), 6716–6723 (2010) Z. Xu, C. Gao, In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 43(16), 6716–6723 (2010)
83.
Zurück zum Zitat H. Hu, X. Wang, J. Wang, L. Wan, F. Liu, H. Zheng, R. Chen, C. Xu, Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem. Phys. Lett. 484(4–6), 247–253 (2010) H. Hu, X. Wang, J. Wang, L. Wan, F. Liu, H. Zheng, R. Chen, C. Xu, Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem. Phys. Lett. 484(4–6), 247–253 (2010)
84.
Zurück zum Zitat J. Wang, H. Hu, X. Wang, C. Xu, M. Zhang, X. Shang, Preparation and mechanical and electrical properties of graphene nanosheets–poly (methyl methacrylate) nanocomposites via in situ suspension polymerization. J. Appl. Polym. Sci. 122(3), 1866–1871 (2011) J. Wang, H. Hu, X. Wang, C. Xu, M. Zhang, X. Shang, Preparation and mechanical and electrical properties of graphene nanosheets–poly (methyl methacrylate) nanocomposites via in situ suspension polymerization. J. Appl. Polym. Sci. 122(3), 1866–1871 (2011)
85.
Zurück zum Zitat Y. Li, D. Pan, S. Chen, Q. Wang, G. Pan, T. Wang, In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater. Des. 47, 850–856 (2013) Y. Li, D. Pan, S. Chen, Q. Wang, G. Pan, T. Wang, In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater. Des. 47, 850–856 (2013)
86.
Zurück zum Zitat G.H. Chen, D.J. Wu, W.G. Weng, W.L. Yan, Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization. J. Appl. Polym. Sci. 82(10), 2506–2513 (2001) G.H. Chen, D.J. Wu, W.G. Weng, W.L. Yan, Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization. J. Appl. Polym. Sci. 82(10), 2506–2513 (2001)
87.
Zurück zum Zitat R. Verdejo, M.M. Bernal, L.J. Romasanta, M.A. Lopez-Manchado, Graphene filled polymer nanocomposites. J. Mater. Chem. 21(10), 3301–3310 (2011) R. Verdejo, M.M. Bernal, L.J. Romasanta, M.A. Lopez-Manchado, Graphene filled polymer nanocomposites. J. Mater. Chem. 21(10), 3301–3310 (2011)
88.
Zurück zum Zitat M. El Achaby, A. Qaiss, Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes. Mater. Des. 44, 81–89 (2013) M. El Achaby, A. Qaiss, Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes. Mater. Des. 44, 81–89 (2013)
89.
Zurück zum Zitat H.-B. Zhang, W.-G. Zheng, Q. Yan, Y. Yang, J.-W. Wang, Z.-H. Lu, G.-Y. Ji, Z.-Z. Yu, Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5), 1191–1196 (2010) H.-B. Zhang, W.-G. Zheng, Q. Yan, Y. Yang, J.-W. Wang, Z.-H. Lu, G.-Y. Ji, Z.-Z. Yu, Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5), 1191–1196 (2010)
90.
Zurück zum Zitat I.H. Kim, Y.G. Jeong, Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J. Polym. Sci. B 48(8), 850–858 (2010) I.H. Kim, Y.G. Jeong, Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J. Polym. Sci. B 48(8), 850–858 (2010)
91.
Zurück zum Zitat Y.-S. Jun, J.G. Um, G. Jiang, G. Lui, A. Yu, Ultra-large sized graphene nano-platelets (GnPs) incorporated polypropylene (PP)/GnPs composites engineered by melt compounding and its thermal, mechanical, and electrical properties. Composites B 133, 218–225 (2018) Y.-S. Jun, J.G. Um, G. Jiang, G. Lui, A. Yu, Ultra-large sized graphene nano-platelets (GnPs) incorporated polypropylene (PP)/GnPs composites engineered by melt compounding and its thermal, mechanical, and electrical properties. Composites B 133, 218–225 (2018)
92.
Zurück zum Zitat J. Yu, H.K. Choi, H.S. Kim, S.Y. Kim, Synergistic effect of hybrid graphene nanoplatelet and multi-walled carbon nanotube fillers on the thermal conductivity of polymer composites and theoretical modeling of the synergistic effect. Composites A 88, 79–85 (2016) J. Yu, H.K. Choi, H.S. Kim, S.Y. Kim, Synergistic effect of hybrid graphene nanoplatelet and multi-walled carbon nanotube fillers on the thermal conductivity of polymer composites and theoretical modeling of the synergistic effect. Composites A 88, 79–85 (2016)
93.
Zurück zum Zitat O.M. Istrate, K.R. Paton, U. Khan, A. O’Neill, A.P. Bell, J.N. Coleman, Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon 78, 243–249 (2014) O.M. Istrate, K.R. Paton, U. Khan, A. O’Neill, A.P. Bell, J.N. Coleman, Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon 78, 243–249 (2014)
94.
Zurück zum Zitat A. Dasari, Z.-Z. Yu, Y.-W. Mai, Electrically conductive and super-tough polyamide-based nanocomposites. Polymer 50(16), 4112–4121 (2009) A. Dasari, Z.-Z. Yu, Y.-W. Mai, Electrically conductive and super-tough polyamide-based nanocomposites. Polymer 50(16), 4112–4121 (2009)
96.
Zurück zum Zitat C.-Q. Li, J.-W. Zha, H.-Q. Long, S.-J. Wang, D.-L. Zhang, Z.-M. Dang, Mechanical and dielectric properties of graphene incorporated polypropylene nanocomposites using polypropylene-graft-maleic anhydride as a compatibilizer. Compos. Sci. Technol. 153, 111–118 (2017) C.-Q. Li, J.-W. Zha, H.-Q. Long, S.-J. Wang, D.-L. Zhang, Z.-M. Dang, Mechanical and dielectric properties of graphene incorporated polypropylene nanocomposites using polypropylene-graft-maleic anhydride as a compatibilizer. Compos. Sci. Technol. 153, 111–118 (2017)
97.
Zurück zum Zitat M. Zhang, Y. Li, Z. Su, G. Wei, Recent advances in the synthesis and applications of graphene–polymer nanocomposites. Polym. Chem. 6(34), 6107–6124 (2015) M. Zhang, Y. Li, Z. Su, G. Wei, Recent advances in the synthesis and applications of graphene–polymer nanocomposites. Polym. Chem. 6(34), 6107–6124 (2015)
98.
Zurück zum Zitat S. Araby, Q. Meng, L. Zhang, H. Kang, P. Majewski, Y. Tang, J. Ma, Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer 55(1), 201–210 (2014) S. Araby, Q. Meng, L. Zhang, H. Kang, P. Majewski, Y. Tang, J. Ma, Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer 55(1), 201–210 (2014)
99.
Zurück zum Zitat J. Ding, Y. Fan, C. Zhao, Y. Liu, C. Yu, N. Yuan, Electrical conductivity of waterborne polyurethane/graphene composites prepared by solution mixing. J. Compos. Mater. 46(6), 747–752 (2012) J. Ding, Y. Fan, C. Zhao, Y. Liu, C. Yu, N. Yuan, Electrical conductivity of waterborne polyurethane/graphene composites prepared by solution mixing. J. Compos. Mater. 46(6), 747–752 (2012)
100.
Zurück zum Zitat Y. Chen, X. Yao, X. Zhou, Z. Pan, Q. Gu, Poly (lactic acid)/graphene nanocomposites prepared via solution blending using chloroform as a mutual solvent. J. Nanosci. Nanotechnol. 11(9), 7813–7819 (2011) Y. Chen, X. Yao, X. Zhou, Z. Pan, Q. Gu, Poly (lactic acid)/graphene nanocomposites prepared via solution blending using chloroform as a mutual solvent. J. Nanosci. Nanotechnol. 11(9), 7813–7819 (2011)
101.
Zurück zum Zitat L. Wang, L. Zhang, M. Tian, Improved polyvinylpyrrolidone (PVP)/graphite nanocomposites by solution compounding and spray drying. Polym. Adv. Technol. 23(3), 652–659 (2012) L. Wang, L. Zhang, M. Tian, Improved polyvinylpyrrolidone (PVP)/graphite nanocomposites by solution compounding and spray drying. Polym. Adv. Technol. 23(3), 652–659 (2012)
102.
Zurück zum Zitat B. Yuan, C. Bao, L. Song, N. Hong, K.M. Liew, Y. Hu, Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem. Eng. J. 237, 411–420 (2014) B. Yuan, C. Bao, L. Song, N. Hong, K.M. Liew, Y. Hu, Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem. Eng. J. 237, 411–420 (2014)
103.
Zurück zum Zitat M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles. Carbon 42(14), 2929–2937 (2004) M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles. Carbon 42(14), 2929–2937 (2004)
106.
Zurück zum Zitat Q. Li, Q. Xue, L. Hao, X. Gao, Q. Zheng, Large dielectric constant of the chemically functionalized carbon nanotube/polymer composites. Compos. Sci. Technol. 68(10), 2290–2296 (2008) Q. Li, Q. Xue, L. Hao, X. Gao, Q. Zheng, Large dielectric constant of the chemically functionalized carbon nanotube/polymer composites. Compos. Sci. Technol. 68(10), 2290–2296 (2008)
107.
Zurück zum Zitat M. Li, X. Huang, C. Wu, H. Xu, P. Jiang, T. Tanaka, Fabrication of two-dimensional hybrid sheets by decorating insulating PANI on reduced graphene oxide for polymer nanocomposites with low dielectric loss and high dielectric constant. J. Mater. Chem. 22(44), 23477–23484 (2012) M. Li, X. Huang, C. Wu, H. Xu, P. Jiang, T. Tanaka, Fabrication of two-dimensional hybrid sheets by decorating insulating PANI on reduced graphene oxide for polymer nanocomposites with low dielectric loss and high dielectric constant. J. Mater. Chem. 22(44), 23477–23484 (2012)
108.
Zurück zum Zitat M.H. Al-Saleh, Carbon-based polymer nanocomposites as dielectric energy storage materials. Nanotechnology 30(6), 062001 (2018) M.H. Al-Saleh, Carbon-based polymer nanocomposites as dielectric energy storage materials. Nanotechnology 30(6), 062001 (2018)
109.
Zurück zum Zitat Z. Wang, N.M. Han, Y. Wu, X. Liu, X. Shen, Q. Zheng, J.-K. Kim, Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly (vinyl alcohol) composites with insulating barriers. Carbon 123, 385–394 (2017) Z. Wang, N.M. Han, Y. Wu, X. Liu, X. Shen, Q. Zheng, J.-K. Kim, Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly (vinyl alcohol) composites with insulating barriers. Carbon 123, 385–394 (2017)
110.
Zurück zum Zitat N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, J.K. Kim, Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26(31), 5480–5487 (2014) N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, J.K. Kim, Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26(31), 5480–5487 (2014)
113.
Zurück zum Zitat X. Zhang, B.W. Li, L. Dong, H. Liu, W. Chen, Y. Shen, C.W. Nan, Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces. Adv. Mater. Interfaces 5(11), 1800096 (2018) X. Zhang, B.W. Li, L. Dong, H. Liu, W. Chen, Y. Shen, C.W. Nan, Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces. Adv. Mater. Interfaces 5(11), 1800096 (2018)
114.
Zurück zum Zitat M. Li, J. Liu, D. Zheng, M. Zheng, Y. Zhao, M. Hu, G. Yue, G. Shan, Enhanced dielectric permittivity and suppressed electrical conductivity in polyvinylidene fluoride nanocomposites filled with 4, 4′-oxydiphenol-functionalized graphene. Nanotechnology 30(26), 265705 (2019) M. Li, J. Liu, D. Zheng, M. Zheng, Y. Zhao, M. Hu, G. Yue, G. Shan, Enhanced dielectric permittivity and suppressed electrical conductivity in polyvinylidene fluoride nanocomposites filled with 4, 4′-oxydiphenol-functionalized graphene. Nanotechnology 30(26), 265705 (2019)
115.
Zurück zum Zitat E. Allahyarov, H. Löwen, L. Zhu, Dipole correlation effects on the local field and the effective dielectric constant in composite dielectrics containing high-k inclusions. Phys. Chem. Chem. Phys. 18(28), 19103–19117 (2016) E. Allahyarov, H. Löwen, L. Zhu, Dipole correlation effects on the local field and the effective dielectric constant in composite dielectrics containing high-k inclusions. Phys. Chem. Chem. Phys. 18(28), 19103–19117 (2016)
121.
Zurück zum Zitat J. Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang, D.D. Sun, Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv. Func. Mater. 20(23), 4175–4181 (2010) J. Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang, D.D. Sun, Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv. Func. Mater. 20(23), 4175–4181 (2010)
122.
Zurück zum Zitat X.-Y. Zhang, H.-P. Li, X.-L. Cui, Y. Lin, Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J. Mater. Chem. 20(14), 2801–2806 (2010) X.-Y. Zhang, H.-P. Li, X.-L. Cui, Y. Lin, Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J. Mater. Chem. 20(14), 2801–2806 (2010)
123.
Zurück zum Zitat J.-B. Kim, J.-W. Yi, J.-E. Nam, Dielectric polymer matrix composite films of CNT coated with anatase TiO2. Thin Solid Films 519(15), 5050–5055 (2011) J.-B. Kim, J.-W. Yi, J.-E. Nam, Dielectric polymer matrix composite films of CNT coated with anatase TiO2. Thin Solid Films 519(15), 5050–5055 (2011)
124.
Zurück zum Zitat H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2009) H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2009)
125.
Zurück zum Zitat Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7), 4324–4330 (2010) Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7), 4324–4330 (2010)
126.
Zurück zum Zitat D. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida, S.-H. Yoon, Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 26(20), 16096–16102 (2010) D. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida, S.-H. Yoon, Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 26(20), 16096–16102 (2010)
127.
Zurück zum Zitat C. Wu, X. Huang, L. Xie, X. Wu, J. Yu, P. Jiang, Morphology-controllable graphene–TiO2 nanorod hybrid nanostructures for polymer composites with high dielectric performance. J. Mater. Chem. 21(44), 17729–17736 (2011) C. Wu, X. Huang, L. Xie, X. Wu, J. Yu, P. Jiang, Morphology-controllable graphene–TiO2 nanorod hybrid nanostructures for polymer composites with high dielectric performance. J. Mater. Chem. 21(44), 17729–17736 (2011)
128.
Zurück zum Zitat J. Yu, T. Ma, S. Liu, Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. Phys. Chem. Chem. Phys. 13(8), 3491–3501 (2011) J. Yu, T. Ma, S. Liu, Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. Phys. Chem. Chem. Phys. 13(8), 3491–3501 (2011)
129.
Zurück zum Zitat Li Y, Yang W, Gao X, A SY, Sun R, Wong C-P (2015) Dielectric properties of CVD graphene/BaTiO3/polyvinylidene fluoride nanocomposites fabricated through powder metallurgy. Paper presented at the 2015 16th International Conference on Electronic Packaging Technology Li Y, Yang W, Gao X, A SY, Sun R, Wong C-P (2015) Dielectric properties of CVD graphene/BaTiO3/polyvinylidene fluoride nanocomposites fabricated through powder metallurgy. Paper presented at the 2015 16th International Conference on Electronic Packaging Technology
132.
Zurück zum Zitat N. Lakshmi, P. Tambe, N.K. Sahu, Giant permittivity of three phase polymer nanocomposites obtained by modifying hybrid nanofillers with polyvinylpyrrolidone. Compos. Interfaces 25(1), 47–67 (2018) N. Lakshmi, P. Tambe, N.K. Sahu, Giant permittivity of three phase polymer nanocomposites obtained by modifying hybrid nanofillers with polyvinylpyrrolidone. Compos. Interfaces 25(1), 47–67 (2018)
134.
Zurück zum Zitat Adams S, MacDougall F, Ellwanger R, Yializis A (2003) Advanced capacitors for airborne pulsed high power microwave. In: 1st international energy conversion engineering conference (IECEC), p 5915 Adams S, MacDougall F, Ellwanger R, Yializis A (2003) Advanced capacitors for airborne pulsed high power microwave. In: 1st international energy conversion engineering conference (IECEC), p 5915
Metadaten
Titel
Advancement on suppression of energy dissipation of percolative polymer nanocomposites: a review on graphene based
verfasst von
U. O. Uyor
A. P. I. Popoola
O. M. Popoola
V. S. Aigbodion
Publikationsdatum
26.08.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 18/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02079-1

Weitere Artikel der Ausgabe 18/2019

Journal of Materials Science: Materials in Electronics 18/2019 Zur Ausgabe

Neuer Inhalt