Skip to main content
Erschienen in:

27.06.2024 | Original Paper

Advancements in solar photovoltaic modelling: selective opposition-based variable weighted grey wolf optimizer with improved Newton–Raphson analysis

verfasst von: Ramachandran Thamaraiselvi, Menaga Dhanasekaran, Nagappan Sundaram Suresh

Erschienen in: Electrical Engineering | Ausgabe 1/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes a unique method for estimating three-diode photovoltaic (PV) model parameters that uses an enhanced Newton–Raphson (NR) method and the selective opposition-based grey wolf optimization (GWO) algorithm with variable weights. For PV systems to operate more effectively, it is essential that these characteristics be estimated accurately. The GWO algorithm and the NR method are used to their full potential in the suggested method to overcome the drawbacks of conventional approaches. The selective opposition mechanism improves the GWO algorithm's exploration and exploitation capabilities, making it possible to search the parameter space efficiently. Using variable weights modifies the impact of various search operators, enhancing convergence rate and solution quality. An enhanced NR (ENR) approach is added to the optimization process to increase accuracy further. The ENR technique is used to revise estimated parameter values from initial guesses iteratively. A real-world PV system dataset used in experiments shows that the suggested solution performs better than state-of-the-art methods. The outcomes demonstrate better robustness, convergence speed, and accuracy. The suggested method provides an effective and efficient method for extracting the unknown parameters of the three-diode photovoltaic model. The research findings can help with photovoltaic energy generation system design and optimization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
6.
Zurück zum Zitat Andrei H, Ivanovici T, Predusca G, et al (2012) Curve fitting method for modeling and analysis of photovoltaic cells characteristics. In: 2012 IEEE International Conference on Automation, Quality and Testing, Robotics, AQTR 2012—Proceedings, pp 307–312. https://doi.org/10.1109/AQTR.2012.6237722 Andrei H, Ivanovici T, Predusca G, et al (2012) Curve fitting method for modeling and analysis of photovoltaic cells characteristics. In: 2012 IEEE International Conference on Automation, Quality and Testing, Robotics, AQTR 2012—Proceedings, pp 307–312. https://​doi.​org/​10.​1109/​AQTR.​2012.​6237722
34.
Zurück zum Zitat Irudayaraj AXR, Wahab NIA, Veerasamy V et al (2023) Decentralized frequency control of restructured energy system using hybrid intelligent algorithm and non-linear fractional order proportional integral derivative controller. IET Renew Power Gener 17:2009–2037. https://doi.org/10.1049/RPG2.12746CrossRef Irudayaraj AXR, Wahab NIA, Veerasamy V et al (2023) Decentralized frequency control of restructured energy system using hybrid intelligent algorithm and non-linear fractional order proportional integral derivative controller. IET Renew Power Gener 17:2009–2037. https://​doi.​org/​10.​1049/​RPG2.​12746CrossRef
48.
Zurück zum Zitat Kumari PA, Geethanjali P (2018) Parameter estimation for photovoltaic system under normal and partial shading conditions: a survey. Renew Sustain Energy Rev 84:1–11CrossRefMATH Kumari PA, Geethanjali P (2018) Parameter estimation for photovoltaic system under normal and partial shading conditions: a survey. Renew Sustain Energy Rev 84:1–11CrossRefMATH
55.
Zurück zum Zitat Louzazni M, Khouya A, Amechnoue K, Craciunescu A (2017) Parameter estimation of photovoltaic module using bio-inspired firefly algorithm. In: Proceedings of 2016 International Renewable and Sustainable Energy Conference, IRSEC 2016, pp 591–596. https://doi.org/10.1109/IRSEC.2016.7983895 Louzazni M, Khouya A, Amechnoue K, Craciunescu A (2017) Parameter estimation of photovoltaic module using bio-inspired firefly algorithm. In: Proceedings of 2016 International Renewable and Sustainable Energy Conference, IRSEC 2016, pp 591–596. https://​doi.​org/​10.​1109/​IRSEC.​2016.​7983895
58.
Zurück zum Zitat Meng X, Liu Y, Gao X, Zhang H (2014) A New Bio-inspired Algorithm: Chicken Swarm Optimization. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 8794, pp 86–94. https://doi.org/10.1007/978-3-319-11857-4_10 Meng X, Liu Y, Gao X, Zhang H (2014) A New Bio-inspired Algorithm: Chicken Swarm Optimization. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 8794, pp 86–94. https://​doi.​org/​10.​1007/​978-3-319-11857-4_​10
71.
Zurück zum Zitat Premkumar M, Jangir P, Kumar C et al (2022) Constraint estimation in three-diode solar photovoltaic model using Gaussian and Cauchy mutation-based hunger games search optimizer and enhanced Newton-Raphson method. IET Renew Power Gener 16:1733–1772. https://doi.org/10.1049/RPG2.12475CrossRef Premkumar M, Jangir P, Kumar C et al (2022) Constraint estimation in three-diode solar photovoltaic model using Gaussian and Cauchy mutation-based hunger games search optimizer and enhanced Newton-Raphson method. IET Renew Power Gener 16:1733–1772. https://​doi.​org/​10.​1049/​RPG2.​12475CrossRef
74.
Zurück zum Zitat Premkumar M, Kumar RS, Lakshmanan M, et al (2022c) Particle swarm optimizer with time-varying acceleration coefficients: application to maximum power point tracking for photovoltaic systems. In: 2022 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON), pp 179–184. https://doi.org/10.1109/CENTCON56610.2022.10051463 Premkumar M, Kumar RS, Lakshmanan M, et al (2022c) Particle swarm optimizer with time-varying acceleration coefficients: application to maximum power point tracking for photovoltaic systems. In: 2022 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON), pp 179–184. https://​doi.​org/​10.​1109/​CENTCON56610.​2022.​10051463
76.
Zurück zum Zitat Premkumar M, Shankar N, Sowmya R et al (2023) A reliable optimization framework for parameter identification of single-diode solar photovoltaic model using weighted velocity-guided grey wolf optimization algorithm and Lambert-W function. IET Renew Power Gener. https://doi.org/10.1049/RPG2.12792CrossRefMATH Premkumar M, Shankar N, Sowmya R et al (2023) A reliable optimization framework for parameter identification of single-diode solar photovoltaic model using weighted velocity-guided grey wolf optimization algorithm and Lambert-W function. IET Renew Power Gener. https://​doi.​org/​10.​1049/​RPG2.​12792CrossRefMATH
77.
Zurück zum Zitat Premkumar M, Sowmya R, Umashankar S, Pradeep J (2020) An Effective Solar Photovoltaic Module Parameter Estimation Technique for Single-Diode Model. In: IOP Conference Series: Materials Science and Engineering Premkumar M, Sowmya R, Umashankar S, Pradeep J (2020) An Effective Solar Photovoltaic Module Parameter Estimation Technique for Single-Diode Model. In: IOP Conference Series: Materials Science and Engineering
Metadaten
Titel
Advancements in solar photovoltaic modelling: selective opposition-based variable weighted grey wolf optimizer with improved Newton–Raphson analysis
verfasst von
Ramachandran Thamaraiselvi
Menaga Dhanasekaran
Nagappan Sundaram Suresh
Publikationsdatum
27.06.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 1/2025
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-024-02547-w