Skip to main content

2025 | OriginalPaper | Buchkapitel

5. Advances in Electronic Biosensors

verfasst von : Ebrahim Ghafar-Zadeh, Saghi Forouhi, Tayebeh Azadmousavi

Erschienen in: Advanced CMOS Biochips

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, the integration of complementary metal-oxide-semiconductor (CMOS) technology into various forms of biosensors and flexible electronics has revolutionized the landscape of healthcare, environmental monitoring, and robotics. This chapter delves into the multifaceted applications of these advanced devices, ranging from portable handheld biosensors and implantable monitoring systems to wearable electrochemical sensors and smart textiles. It also explores the innovative concept of “Body Dust”, which aims to push the boundaries of in-body diagnostics through the development of ultra-miniaturized sensors. Table 5.1 compares a few recent advances in this field. This chapter provides an overview of how CMOS technology is poised to transform real-time monitoring, data analysis, and personalized medicine.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Simion M, Cobzac S, Casoni D (2017) Image analysis approaches to improve the thin layer chromatography-chemometric-based investigations of natural extracts. Studia UBB Chemia, LXII 2:67–80CrossRef Simion M, Cobzac S, Casoni D (2017) Image analysis approaches to improve the thin layer chromatography-chemometric-based investigations of natural extracts. Studia UBB Chemia, LXII 2:67–80CrossRef
2.
Zurück zum Zitat Mak P-I (2020) Lab-on-CMOS—An in-vitro diagnostic (IVD) tool for a healthier society. J Semicond 41(11):110301CrossRef Mak P-I (2020) Lab-on-CMOS—An in-vitro diagnostic (IVD) tool for a healthier society. J Semicond 41(11):110301CrossRef
3.
Zurück zum Zitat Cetin AE, Kocer ZA, Topkaya SN, Yazici ZA (2021) Handheld plasmonic biosensor for virus detection in field-settings. Sensors Actuators B Chem 344:130301CrossRef Cetin AE, Kocer ZA, Topkaya SN, Yazici ZA (2021) Handheld plasmonic biosensor for virus detection in field-settings. Sensors Actuators B Chem 344:130301CrossRef
4.
Zurück zum Zitat Nguyen VD, Nguyen HQ, Bui KH, Ko YS, Park BJ, Seo TS (2022) A handheld-type total integrated capillary electrophoresis system for SARS-CoV-2 diagnostics: power, fluorescence detection, and data analysis by smartphone. Biosens Bioelectron 195:113632CrossRef Nguyen VD, Nguyen HQ, Bui KH, Ko YS, Park BJ, Seo TS (2022) A handheld-type total integrated capillary electrophoresis system for SARS-CoV-2 diagnostics: power, fluorescence detection, and data analysis by smartphone. Biosens Bioelectron 195:113632CrossRef
5.
Zurück zum Zitat Ryazantsev D et al (2024) A portable readout system for biomarker detection with Aptamer-modified CMOS ISFET Array. Sensors 24(10):3008CrossRef Ryazantsev D et al (2024) A portable readout system for biomarker detection with Aptamer-modified CMOS ISFET Array. Sensors 24(10):3008CrossRef
6.
Zurück zum Zitat Bianchi V, Boni A, Fortunati S, Giannetto M, Careri M, De Munari I (2019) A Wi-Fi cloud-based portable potentiostat for electrochemical biosensors. IEEE Trans Instrum Meas 69(6):3232–3240CrossRef Bianchi V, Boni A, Fortunati S, Giannetto M, Careri M, De Munari I (2019) A Wi-Fi cloud-based portable potentiostat for electrochemical biosensors. IEEE Trans Instrum Meas 69(6):3232–3240CrossRef
7.
Zurück zum Zitat Ng DC et al (2008) An implantable and fully integrated complementary metal–oxide semiconductor device for in vivo neural imaging and electrical interfacing with the mouse hippocampus. Sensors Actuators A Phys 145:176–186CrossRef Ng DC et al (2008) An implantable and fully integrated complementary metal–oxide semiconductor device for in vivo neural imaging and electrical interfacing with the mouse hippocampus. Sensors Actuators A Phys 145:176–186CrossRef
8.
Zurück zum Zitat Angotzi GN et al (2019) SiNAPS: an implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings. Biosens Bioelectron 126:355–364CrossRef Angotzi GN et al (2019) SiNAPS: an implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings. Biosens Bioelectron 126:355–364CrossRef
9.
Zurück zum Zitat De Lima JA (2020) A 0.55-V 0.1° C-Accuracy All-CMOS Temperature Sensor for Implanted Devices. In: 2020 33rd Symposium on Integrated Circuits and Systems Design (SBCCI). IEEE, pp 1–6 De Lima JA (2020) A 0.55-V 0.1° C-Accuracy All-CMOS Temperature Sensor for Implanted Devices. In: 2020 33rd Symposium on Integrated Circuits and Systems Design (SBCCI). IEEE, pp 1–6
10.
Zurück zum Zitat Sonmezoglu S, Maharbiz MM (2020) 34.4 A 4.5 mm 3 deep-tissue ultrasonic implantable luminescence oxygen sensor. In: 2020 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, pp 454–456CrossRef Sonmezoglu S, Maharbiz MM (2020) 34.4 A 4.5 mm 3 deep-tissue ultrasonic implantable luminescence oxygen sensor. In: 2020 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, pp 454–456CrossRef
11.
Zurück zum Zitat Moazeni S et al (2021) A mechanically flexible, implantable neural Interface for computational imaging and Optogenetic stimulation over 5.4 × 5.4 mm 2 FoV. IEEE Trans Biomed Circuits Syst 15(6):1295–1305CrossRef Moazeni S et al (2021) A mechanically flexible, implantable neural Interface for computational imaging and Optogenetic stimulation over 5.4 × 5.4 mm 2 FoV. IEEE Trans Biomed Circuits Syst 15(6):1295–1305CrossRef
12.
Zurück zum Zitat Zhu C, Hong L, Yang H, Sengupta K (2022) A packaged multiplexed fluorescent biomolecular sensor array and ultralow-power wireless interface in CMOS for ingestible electronic applications. IEEE Sensors J 22(24):24060–24074CrossRef Zhu C, Hong L, Yang H, Sengupta K (2022) A packaged multiplexed fluorescent biomolecular sensor array and ultralow-power wireless interface in CMOS for ingestible electronic applications. IEEE Sensors J 22(24):24060–24074CrossRef
13.
Zurück zum Zitat Wang ML et al (2021) A wireless implantable potentiostat for programmable electrochemical drug delivery. In: 2021 IEEE biomedical circuits and systems conference (BioCAS). IEEE, pp 1–4 Wang ML et al (2021) A wireless implantable potentiostat for programmable electrochemical drug delivery. In: 2021 IEEE biomedical circuits and systems conference (BioCAS). IEEE, pp 1–4
14.
Zurück zum Zitat Lee C-E, Park J-H, Lim J, Choi C, Song Y-K (2024) A wireless stimulator system-on-chip with an optically writable ID for addressable cortical microimplants. Solid State Electron 216:108914CrossRef Lee C-E, Park J-H, Lim J, Choi C, Song Y-K (2024) A wireless stimulator system-on-chip with an optically writable ID for addressable cortical microimplants. Solid State Electron 216:108914CrossRef
15.
Zurück zum Zitat He Y et al (2022) An implantable neuromorphic sensing system featuring near-sensor computation and send-on-delta transmission for wireless neural sensing of peripheral nerves. IEEE J Solid State Circuits 57(10):3058–3070CrossRef He Y et al (2022) An implantable neuromorphic sensing system featuring near-sensor computation and send-on-delta transmission for wireless neural sensing of peripheral nerves. IEEE J Solid State Circuits 57(10):3058–3070CrossRef
16.
Zurück zum Zitat Neshatvar N, Schormans M, Jiang D, Schmitt S, Detemple P, Demosthenous A (2022) An implantable phase locked loop MEMS-based readout system for heart transplantation. IEEE Trans Circuits Syst II: Express Briefs 69(10):4168–4172 Neshatvar N, Schormans M, Jiang D, Schmitt S, Detemple P, Demosthenous A (2022) An implantable phase locked loop MEMS-based readout system for heart transplantation. IEEE Trans Circuits Syst II: Express Briefs 69(10):4168–4172
17.
Zurück zum Zitat Besirli M et al (2023) An implantable wireless system for remote hemodynamic monitoring of heart failure patients. IEEE Trans Biomed Circuits Syst 17(4):688–700CrossRef Besirli M et al (2023) An implantable wireless system for remote hemodynamic monitoring of heart failure patients. IEEE Trans Biomed Circuits Syst 17(4):688–700CrossRef
18.
Zurück zum Zitat Shi C et al (2021) Application of a sub–0.1-mm3 implantable mote for in vivo real-time wireless temperature sensing. Sci Adv 7(19):eabf6312CrossRef Shi C et al (2021) Application of a sub–0.1-mm3 implantable mote for in vivo real-time wireless temperature sensing. Sci Adv 7(19):eabf6312CrossRef
19.
Zurück zum Zitat Zhang Y, Muthuraman P, Andino-Pavlovsky V, Uguz I, Elloian J, Shepard KL (2022) Augmented ultrasonography with implanted CMOS electronic motes. Nat Commun 13(1):3521CrossRef Zhang Y, Muthuraman P, Andino-Pavlovsky V, Uguz I, Elloian J, Shepard KL (2022) Augmented ultrasonography with implanted CMOS electronic motes. Nat Commun 13(1):3521CrossRef
20.
Zurück zum Zitat Agnese F et al (2024) Characterization of IMIC, an implantable needle-shaped positron sensitive monolithic active pixel sensor for preclinical molecular neuroimaging. In: Nuclear instruments and methods in physics research Section A: Accelerators, spectrometers, detectors and associated equipment, p 169456 Agnese F et al (2024) Characterization of IMIC, an implantable needle-shaped positron sensitive monolithic active pixel sensor for preclinical molecular neuroimaging. In: Nuclear instruments and methods in physics research Section A: Accelerators, spectrometers, detectors and associated equipment, p 169456
21.
Zurück zum Zitat Wu C-Y et al (2020) Cmos 256-pixel/480-pixel photovoltaic-powered subretinal prosthetic chips with wide image dynamic range and bi/four-directional sharing electrodes and their ex vivo experimental validations with mice. IEEE Trans Circuits Syst I: Regular Papers 67(10):3273–3283CrossRef Wu C-Y et al (2020) Cmos 256-pixel/480-pixel photovoltaic-powered subretinal prosthetic chips with wide image dynamic range and bi/four-directional sharing electrodes and their ex vivo experimental validations with mice. IEEE Trans Circuits Syst I: Regular Papers 67(10):3273–3283CrossRef
22.
Zurück zum Zitat Aymerich J et al (2020) A 15-μW 105-dB 1.8-V pp Potentiostatic Delta-sigma modulator for wearable electrochemical transducers in 65-nm CMOS technology. IEEE Access 8:62127–62136CrossRef Aymerich J et al (2020) A 15-μW 105-dB 1.8-V pp Potentiostatic Delta-sigma modulator for wearable electrochemical transducers in 65-nm CMOS technology. IEEE Access 8:62127–62136CrossRef
23.
Zurück zum Zitat Lin Q et al (2020) A 119dB dynamic range charge counting light-to-digital converter for wearable PPG/NIRS monitoring applications. IEEE Trans Biomed Circuits Syst 14(4):800–810CrossRef Lin Q et al (2020) A 119dB dynamic range charge counting light-to-digital converter for wearable PPG/NIRS monitoring applications. IEEE Trans Biomed Circuits Syst 14(4):800–810CrossRef
24.
Zurück zum Zitat Lin Q et al (2021) A 134 dB dynamic range noise shaping slope light-to-digital converter for wearable chest PPG applications. IEEE Trans Biomed Circuits Syst 15(6):1224–1235CrossRef Lin Q et al (2021) A 134 dB dynamic range noise shaping slope light-to-digital converter for wearable chest PPG applications. IEEE Trans Biomed Circuits Syst 15(6):1224–1235CrossRef
25.
Zurück zum Zitat Luo W, Sharma V, Young DJ (2020) A paper-based flexible tactile sensor array for low-cost wearable human health monitoring. J Microelectromech Syst 29(5):825–831CrossRef Luo W, Sharma V, Young DJ (2020) A paper-based flexible tactile sensor array for low-cost wearable human health monitoring. J Microelectromech Syst 29(5):825–831CrossRef
26.
Zurück zum Zitat Cui Y et al (2024) A wearable bracelet for simultaneous monitoring of transcutaneous carbon dioxide and pulse rates. Adv Electron Mater 10:2300760CrossRef Cui Y et al (2024) A wearable bracelet for simultaneous monitoring of transcutaneous carbon dioxide and pulse rates. Adv Electron Mater 10:2300760CrossRef
27.
Zurück zum Zitat Hedayatipour A, Aslanzadeh S, Hesari SH, Haque MA, McFarlane N (2020) A wearable CMOS impedance to frequency sensing system for non-invasive impedance measurements. IEEE Trans Biomed Circuits Syst 14(5):1108–1121CrossRef Hedayatipour A, Aslanzadeh S, Hesari SH, Haque MA, McFarlane N (2020) A wearable CMOS impedance to frequency sensing system for non-invasive impedance measurements. IEEE Trans Biomed Circuits Syst 14(5):1108–1121CrossRef
28.
Zurück zum Zitat Liu X et al (2022) A wearable fiber-free optical sensor for continuous monitoring of cerebral blood flow in freely behaving mice. IEEE Trans Biomed Eng Liu X et al (2022) A wearable fiber-free optical sensor for continuous monitoring of cerebral blood flow in freely behaving mice. IEEE Trans Biomed Eng
29.
Zurück zum Zitat Choi J, Shin J, Kang D, Park D-S (2015) Always-on CMOS image sensor for mobile and wearable devices. IEEE J Solid State Circuits 51(1):130–140CrossRef Choi J, Shin J, Kang D, Park D-S (2015) Always-on CMOS image sensor for mobile and wearable devices. IEEE J Solid State Circuits 51(1):130–140CrossRef
30.
Zurück zum Zitat Costanzo I, Sen D, Guler U (2020) An integrated readout circuit for a transcutaneous oxygen sensing wearable device. In: 2020 IEEE Custom Integrated Circuits Conference (CICC). IEEE, pp 1–4 Costanzo I, Sen D, Guler U (2020) An integrated readout circuit for a transcutaneous oxygen sensing wearable device. In: 2020 IEEE Custom Integrated Circuits Conference (CICC). IEEE, pp 1–4
31.
Zurück zum Zitat Conca E et al (2020) Large-area, fast-gated digital SiPM with integrated TDC for portable and wearable time-domain NIRS. IEEE J Solid State Circuits 55(11):3097–3111CrossRef Conca E et al (2020) Large-area, fast-gated digital SiPM with integrated TDC for portable and wearable time-domain NIRS. IEEE J Solid State Circuits 55(11):3097–3111CrossRef
32.
Zurück zum Zitat Singh W, Deb S, Bahubalindruni P (2020) Low-noise energy efficient readout front-end for wearable continuous blood pressure monitoring systems. IEEE Trans Consum Electron 66(4):318–326CrossRef Singh W, Deb S, Bahubalindruni P (2020) Low-noise energy efficient readout front-end for wearable continuous blood pressure monitoring systems. IEEE Trans Consum Electron 66(4):318–326CrossRef
33.
Zurück zum Zitat Lin B, Ma Z, Atef M, Ying L, Wang G (2021) Low-power high-sensitivity photoplethysmography sensor for wearable health monitoring system. IEEE Sensors J 21(14):16141–16151CrossRef Lin B, Ma Z, Atef M, Ying L, Wang G (2021) Low-power high-sensitivity photoplethysmography sensor for wearable health monitoring system. IEEE Sensors J 21(14):16141–16151CrossRef
34.
Zurück zum Zitat Wuthibenjaphonchai N, Haruta M, Sasagawa K, Tokuda T, Carrara S, Ohta J (2021) Wearable and battery-free health-monitoring devices with optical power transfer. IEEE Sensors J 21(7):9402–9412CrossRef Wuthibenjaphonchai N, Haruta M, Sasagawa K, Tokuda T, Carrara S, Ohta J (2021) Wearable and battery-free health-monitoring devices with optical power transfer. IEEE Sensors J 21(7):9402–9412CrossRef
35.
Zurück zum Zitat Ruppert C, Phogat N, Laufer S, Kohl M, Deigner H-P (2019) A smartphone readout system for gold nanoparticle-based lateral flow assays: application to monitoring of digoxigenin. Microchim Acta 186:1–9CrossRef Ruppert C, Phogat N, Laufer S, Kohl M, Deigner H-P (2019) A smartphone readout system for gold nanoparticle-based lateral flow assays: application to monitoring of digoxigenin. Microchim Acta 186:1–9CrossRef
36.
Zurück zum Zitat Rohit A, Kaya S (2021) A systematic study of wearable multi-modal capacitive textile patches. IEEE Sensors J 21(23):26215–26225CrossRef Rohit A, Kaya S (2021) A systematic study of wearable multi-modal capacitive textile patches. IEEE Sensors J 21(23):26215–26225CrossRef
37.
Zurück zum Zitat Kim MS et al (2024) Accessorizing quadrupedal robots with wearable electronics. Adv Intell Syst 6:2300633CrossRef Kim MS et al (2024) Accessorizing quadrupedal robots with wearable electronics. Adv Intell Syst 6:2300633CrossRef
38.
Zurück zum Zitat Bunea A-C et al (2021) E-skin: the dawn of a new era of on-body monitoring systems. Micromachines 12(9):1091CrossRef Bunea A-C et al (2021) E-skin: the dawn of a new era of on-body monitoring systems. Micromachines 12(9):1091CrossRef
39.
Zurück zum Zitat Torres Sevilla GA, Qaiser N, Cordero MD, Shaikh SF, Hussain MM (2018) Fully spherical stretchable silicon photodiodes array for simultaneous 360 imaging. Appl Phys Lett 113(13) Torres Sevilla GA, Qaiser N, Cordero MD, Shaikh SF, Hussain MM (2018) Fully spherical stretchable silicon photodiodes array for simultaneous 360 imaging. Appl Phys Lett 113(13)
40.
Zurück zum Zitat Wu YL, Fukuda K, Yokota T, Someya T (2019) A highly responsive organic image sensor based on a two-terminal organic photodetector with photomultiplication. Adv Mater 31(43):1903687CrossRef Wu YL, Fukuda K, Yokota T, Someya T (2019) A highly responsive organic image sensor based on a two-terminal organic photodetector with photomultiplication. Adv Mater 31(43):1903687CrossRef
41.
Zurück zum Zitat Yuan Z et al (2020) Trace-level, multi-gas detection for food quality assessment based on decorated silicon transistor arrays. Adv Mater 32(21):1908385CrossRef Yuan Z et al (2020) Trace-level, multi-gas detection for food quality assessment based on decorated silicon transistor arrays. Adv Mater 32(21):1908385CrossRef
42.
Zurück zum Zitat Shaikh SF et al (2019) Noninvasive featherlight wearable compliant “marine skin”: standalone multisensory system for deep-sea environmental monitoring. Small 15(10):1804385MathSciNetCrossRef Shaikh SF et al (2019) Noninvasive featherlight wearable compliant “marine skin”: standalone multisensory system for deep-sea environmental monitoring. Small 15(10):1804385MathSciNetCrossRef
43.
Zurück zum Zitat Picardi G, Chellapurath M, Iacoponi S, Stefanni S, Laschi C, Calisti M (2020) Bioinspired underwater legged robot for seabed exploration with low environmental disturbance. Sci Robot 5(42):eaaz1012CrossRef Picardi G, Chellapurath M, Iacoponi S, Stefanni S, Laschi C, Calisti M (2020) Bioinspired underwater legged robot for seabed exploration with low environmental disturbance. Sci Robot 5(42):eaaz1012CrossRef
44.
Zurück zum Zitat Karimi MA et al (2019) Flexible tag design for semi-continuous wireless data acquisition from marine animals. Flex Print Electron 4(3):035006CrossRef Karimi MA et al (2019) Flexible tag design for semi-continuous wireless data acquisition from marine animals. Flex Print Electron 4(3):035006CrossRef
45.
Zurück zum Zitat Seo D-H, Chatterjee B, Scott S, Valentino D, Peroulis D, Sen S (2020) A wearable cmos biosensor with 3 designs of energy-resolution scalable time-based resistance to digital converter. arXiv preprint arXiv:2011.00649. Seo D-H, Chatterjee B, Scott S, Valentino D, Peroulis D, Sen S (2020) A wearable cmos biosensor with 3 designs of energy-resolution scalable time-based resistance to digital converter. arXiv preprint arXiv:2011.00649.
46.
Zurück zum Zitat Silverio AA (2021) Design of a wide temperature range, high linearity time domain CMOS-based temperature sensor for wearable IOT applications. In: 2021 2nd International Conference on Innovative and Creative Information Technology (ICITech). IEEE, pp 226–230CrossRef Silverio AA (2021) Design of a wide temperature range, high linearity time domain CMOS-based temperature sensor for wearable IOT applications. In: 2021 2nd International Conference on Innovative and Creative Information Technology (ICITech). IEEE, pp 226–230CrossRef
47.
Zurück zum Zitat Yu C et al (2023) High-performance multifunctional piezoresistive/piezoelectric pressure sensor with thermochromic function for wearable monitoring. Chem Eng J 459:141648CrossRef Yu C et al (2023) High-performance multifunctional piezoresistive/piezoelectric pressure sensor with thermochromic function for wearable monitoring. Chem Eng J 459:141648CrossRef
48.
Zurück zum Zitat Kim S-W, Lee K, Yeom J, Lee T-H, Kim D-H, Kim JJ (2020) Wearable multi-biosignal analysis integrated interface with direct sleep-stage classification. IEEE Access 8:46131–46140CrossRef Kim S-W, Lee K, Yeom J, Lee T-H, Kim D-H, Kim JJ (2020) Wearable multi-biosignal analysis integrated interface with direct sleep-stage classification. IEEE Access 8:46131–46140CrossRef
49.
Zurück zum Zitat Khayatzadeh M, Zhang X, Tan J, Liew W-S, Lian Y (2013) A 0.7-v 17.4-/spl mu/w 3-lead wireless ecg soc. IEEE Trans Biomed Circuits Syst 7(5):583–592CrossRef Khayatzadeh M, Zhang X, Tan J, Liew W-S, Lian Y (2013) A 0.7-v 17.4-/spl mu/w 3-lead wireless ecg soc. IEEE Trans Biomed Circuits Syst 7(5):583–592CrossRef
50.
Zurück zum Zitat Chen C-Y et al (2013) A low-power bio-potential acquisition system with flexible PDMS dry electrodes for portable ubiquitous healthcare applications. Sensors 13(3):3077–3091MathSciNetCrossRef Chen C-Y et al (2013) A low-power bio-potential acquisition system with flexible PDMS dry electrodes for portable ubiquitous healthcare applications. Sensors 13(3):3077–3091MathSciNetCrossRef
51.
Zurück zum Zitat Lin B-S, Chou W, Wang H-Y, Huang Y-J, Pan J-S (2013) Development of novel non-contact electrodes for mobile electrocardiogram monitoring system. IEEE J Transl Eng Health Med 1:1–8CrossRef Lin B-S, Chou W, Wang H-Y, Huang Y-J, Pan J-S (2013) Development of novel non-contact electrodes for mobile electrocardiogram monitoring system. IEEE J Transl Eng Health Med 1:1–8CrossRef
52.
Zurück zum Zitat Miao F, Cheng Y, He Y, He Q, Li Y (2015) A wearable context-aware ECG monitoring system integrated with built-in kinematic sensors of the smartphone. Sensors 15(5):11465–11484CrossRef Miao F, Cheng Y, He Y, He Q, Li Y (2015) A wearable context-aware ECG monitoring system integrated with built-in kinematic sensors of the smartphone. Sensors 15(5):11465–11484CrossRef
53.
Zurück zum Zitat Jain SK, Bhaumik B (2016) An energy efficient ECG signal processor detecting cardiovascular diseases on smartphone. IEEE Trans Biomed Circuits Syst 11(2):314–323CrossRef Jain SK, Bhaumik B (2016) An energy efficient ECG signal processor detecting cardiovascular diseases on smartphone. IEEE Trans Biomed Circuits Syst 11(2):314–323CrossRef
54.
Zurück zum Zitat Zhang X, Zhang Z, Li Y, Liu C, Guo YX, Lian Y (2015) A 2.89-μW clockless wireless dry-electrode ECG SoC for wearable sensors. In: 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC). IEEE, pp 1–4 Zhang X, Zhang Z, Li Y, Liu C, Guo YX, Lian Y (2015) A 2.89-μW clockless wireless dry-electrode ECG SoC for wearable sensors. In: 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC). IEEE, pp 1–4
55.
Zurück zum Zitat Sun F, Yi C, Li W, Li Y (2017) A wearable H-shirt for exercise ECG monitoring and individual lactate threshold computing. Comput Ind 92:1–11CrossRef Sun F, Yi C, Li W, Li Y (2017) A wearable H-shirt for exercise ECG monitoring and individual lactate threshold computing. Comput Ind 92:1–11CrossRef
56.
Zurück zum Zitat Wang T-Y, Lai M-R, Twigg CM, Peng S-Y (2013) A fully reconfigurable low-noise biopotential sensing amplifier with 1.96 noise efficiency factor. IEEE Trans Biomed Circuits Syst 8(3):411–422CrossRef Wang T-Y, Lai M-R, Twigg CM, Peng S-Y (2013) A fully reconfigurable low-noise biopotential sensing amplifier with 1.96 noise efficiency factor. IEEE Trans Biomed Circuits Syst 8(3):411–422CrossRef
57.
Zurück zum Zitat Tseng KC, Lin B-S, Liao L-D, Wang Y-T, Wang Y-L (2013) Development of a wearable mobile electrocardiogram monitoring system by using novel dry foam electrodes. IEEE Syst J 8(3):900–906CrossRef Tseng KC, Lin B-S, Liao L-D, Wang Y-T, Wang Y-L (2013) Development of a wearable mobile electrocardiogram monitoring system by using novel dry foam electrodes. IEEE Syst J 8(3):900–906CrossRef
58.
Zurück zum Zitat Wang Y, Doleschel S, Wunderlich R, Heinen S (2015) A wearable wireless ECG monitoring system with dynamic transmission power control for long-term homecare. J Med Syst 39:1–10CrossRef Wang Y, Doleschel S, Wunderlich R, Heinen S (2015) A wearable wireless ECG monitoring system with dynamic transmission power control for long-term homecare. J Med Syst 39:1–10CrossRef
59.
Zurück zum Zitat Lin H-Y, Liang S-Y, Ho Y-L, Lin Y-H, Ma H-P (2014) Discrete-wavelet-transform-based noise removal and feature extraction for ECG signals. Irbm 35(6):351–361CrossRef Lin H-Y, Liang S-Y, Ho Y-L, Lin Y-H, Ma H-P (2014) Discrete-wavelet-transform-based noise removal and feature extraction for ECG signals. Irbm 35(6):351–361CrossRef
60.
Zurück zum Zitat Winokur ES, Delano MK, Sodini CG (2012) A wearable cardiac monitor for long-term data acquisition and analysis. IEEE Trans Biomed Eng 60(1):189–192CrossRef Winokur ES, Delano MK, Sodini CG (2012) A wearable cardiac monitor for long-term data acquisition and analysis. IEEE Trans Biomed Eng 60(1):189–192CrossRef
61.
Zurück zum Zitat Singh M, Singh G, Singh J, Kumar Y (2021) Design and validation of wearable smartphone based wireless cardiac activity monitoring sensor. Wirel Pers Commun 119(1):441–457CrossRef Singh M, Singh G, Singh J, Kumar Y (2021) Design and validation of wearable smartphone based wireless cardiac activity monitoring sensor. Wirel Pers Commun 119(1):441–457CrossRef
62.
Zurück zum Zitat Laababid Y, El Khadiri K, Tahiri A (2022) Design of a low-Power low-Noise ECG amplifier for smart wearable devices using 180nm CMOS technology. WSEAS Trans Power Syst 17:177–186CrossRef Laababid Y, El Khadiri K, Tahiri A (2022) Design of a low-Power low-Noise ECG amplifier for smart wearable devices using 180nm CMOS technology. WSEAS Trans Power Syst 17:177–186CrossRef
63.
Zurück zum Zitat Wang Y, Miao F, An Q, Liu Z, Chen C, Li Y (2022) Wearable multimodal vital sign monitoring sensor with fully integrated analog front end. IEEE Sensors J 22(13):13462–13471CrossRef Wang Y, Miao F, An Q, Liu Z, Chen C, Li Y (2022) Wearable multimodal vital sign monitoring sensor with fully integrated analog front end. IEEE Sensors J 22(13):13462–13471CrossRef
64.
Zurück zum Zitat Ng DC et al (2006) Pulse frequency modulation based CMOS image sensor for subretinal stimulation. IEEE Trans Circuits Syst II: Express Briefs 53(6):487–491 Ng DC et al (2006) Pulse frequency modulation based CMOS image sensor for subretinal stimulation. IEEE Trans Circuits Syst II: Express Briefs 53(6):487–491
65.
Zurück zum Zitat Ohta J et al (2006) Silicon LSI-based smart stimulators for retinal prosthesis. IEEE Eng Med Biol Mag 25(5):47–59CrossRef Ohta J et al (2006) Silicon LSI-based smart stimulators for retinal prosthesis. IEEE Eng Med Biol Mag 25(5):47–59CrossRef
66.
Zurück zum Zitat Perna A, Angotzi GN, Berdondini L, Ribeiro JF (2023) Advancing the interfacing performances of chronically implantable neural probes in the era of CMOS neuroelectronics. Front Neurosci 17:1275908CrossRef Perna A, Angotzi GN, Berdondini L, Ribeiro JF (2023) Advancing the interfacing performances of chronically implantable neural probes in the era of CMOS neuroelectronics. Front Neurosci 17:1275908CrossRef
67.
Zurück zum Zitat Takacs J, Pollock CL, Guenther JR, Bahar M, Napier C, Hunt MA (2014) Validation of the Fitbit one activity monitor device during treadmill walking. J Sci Med Sport 17(5):496–500CrossRef Takacs J, Pollock CL, Guenther JR, Bahar M, Napier C, Hunt MA (2014) Validation of the Fitbit one activity monitor device during treadmill walking. J Sci Med Sport 17(5):496–500CrossRef
68.
Zurück zum Zitat Weinstein RL, Schwartz SL, Brazg RL, Bugler JR, Peyser TA, McGarraugh GV (2007) Accuracy of the 5-day FreeStyle navigator continuous glucose monitoring system: comparison with frequent laboratory reference measurements. Diabetes Care 30(5):1125–1130CrossRef Weinstein RL, Schwartz SL, Brazg RL, Bugler JR, Peyser TA, McGarraugh GV (2007) Accuracy of the 5-day FreeStyle navigator continuous glucose monitoring system: comparison with frequent laboratory reference measurements. Diabetes Care 30(5):1125–1130CrossRef
69.
Zurück zum Zitat Sanders P et al (2016) Performance of a new atrial fibrillation detection algorithm in a miniaturized insertable cardiac monitor: results from the reveal LINQ usability study. Heart Rhythm 13(7):1425–1430CrossRef Sanders P et al (2016) Performance of a new atrial fibrillation detection algorithm in a miniaturized insertable cardiac monitor: results from the reveal LINQ usability study. Heart Rhythm 13(7):1425–1430CrossRef
70.
Zurück zum Zitat Jia W et al (2013) Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal Chem 85(14):6553–6560CrossRef Jia W et al (2013) Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal Chem 85(14):6553–6560CrossRef
71.
Zurück zum Zitat Mehmeti E, Kilic T, Laur C, Carrara S (2020) Electrochemical determination of nicotine in smokers’ sweat. Microchem J 158:105155CrossRef Mehmeti E, Kilic T, Laur C, Carrara S (2020) Electrochemical determination of nicotine in smokers’ sweat. Microchem J 158:105155CrossRef
72.
Zurück zum Zitat Wujcik EK, Blasdel NJ, Trowbridge D, Monty CN (2013) Ion sensor for the quantification of sodium in sweat samples. IEEE Sensors J 13(9):3430–3436CrossRef Wujcik EK, Blasdel NJ, Trowbridge D, Monty CN (2013) Ion sensor for the quantification of sodium in sweat samples. IEEE Sensors J 13(9):3430–3436CrossRef
73.
Zurück zum Zitat Kahn JM, Katz RH, Pister KS (1999) Next century challenges: mobile networking for “Smart Dust”. In: Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking, pp 271–278CrossRef Kahn JM, Katz RH, Pister KS (1999) Next century challenges: mobile networking for “Smart Dust”. In: Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking, pp 271–278CrossRef
74.
Zurück zum Zitat Warneke B, Last M, Liebowitz B, Pister KS (2001) Smart dust: communicating with a cubic-millimeter computer. Computer 34(1):44–51CrossRef Warneke B, Last M, Liebowitz B, Pister KS (2001) Smart dust: communicating with a cubic-millimeter computer. Computer 34(1):44–51CrossRef
75.
Zurück zum Zitat Cook BW, Lanzisera S, Pister KS (2006) SoC issues for RF smart dust. Proc IEEE 94(6):1177–1196CrossRef Cook BW, Lanzisera S, Pister KS (2006) SoC issues for RF smart dust. Proc IEEE 94(6):1177–1196CrossRef
76.
Zurück zum Zitat Carrara S (2020) Body dust: well beyond wearable and implantable sensors. IEEE Sensors J 21(11):12398–12406CrossRef Carrara S (2020) Body dust: well beyond wearable and implantable sensors. IEEE Sensors J 21(11):12398–12406CrossRef
77.
Zurück zum Zitat Kahn JM, Katz RH, Pister KS (2000) Emerging challenges: mobile networking for “smart dust”. J Commun Net 2(3):188–196CrossRef Kahn JM, Katz RH, Pister KS (2000) Emerging challenges: mobile networking for “smart dust”. J Commun Net 2(3):188–196CrossRef
78.
Zurück zum Zitat Seo D, Carmena JM, Rabaey JM, Alon E, Maharbiz MM (2013) Neural dust: an ultrasonic, low power solution for chronic brain-machine interfaces. arXiv preprint arXiv:1307.2196 Seo D, Carmena JM, Rabaey JM, Alon E, Maharbiz MM (2013) Neural dust: an ultrasonic, low power solution for chronic brain-machine interfaces. arXiv preprint arXiv:1307.2196
79.
Zurück zum Zitat Carrara S, Georgiou P(2018) Body dust: miniaturized highly-integrated low power sensing for remotely powered drinkable CMOS bioelectronics. arXiv preprint arXiv:1805.05840 Carrara S, Georgiou P(2018) Body dust: miniaturized highly-integrated low power sensing for remotely powered drinkable CMOS bioelectronics. arXiv preprint arXiv:1805.05840
80.
Zurück zum Zitat Seo D et al (2016) Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91(3):529–539CrossRef Seo D et al (2016) Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91(3):529–539CrossRef
81.
Zurück zum Zitat Sathyan S, Pulari SR (2018) A deeper insight on developments and real-time applications of smart dust particle sensor technology. In: Computational vision and bio inspired computing. Springer, pp 193–204CrossRef Sathyan S, Pulari SR (2018) A deeper insight on developments and real-time applications of smart dust particle sensor technology. In: Computational vision and bio inspired computing. Springer, pp 193–204CrossRef
82.
Zurück zum Zitat Piech DK et al. (2018) StimDust: a mm-scale implantablewireless precision neural stimulator with ultrasonic power and communication. arXiv preprint arXiv:1807.07590 Piech DK et al. (2018) StimDust: a mm-scale implantablewireless precision neural stimulator with ultrasonic power and communication. arXiv preprint arXiv:1807.07590
83.
Zurück zum Zitat Charthad J, Weber MJ, Chang TC, Arbabian A (2015) A mm-sized implantable medical device (IMD) with ultrasonic power transfer and a hybrid bi-directional data link. IEEE J Solid State Circuits 50(8):1741–1753CrossRef Charthad J, Weber MJ, Chang TC, Arbabian A (2015) A mm-sized implantable medical device (IMD) with ultrasonic power transfer and a hybrid bi-directional data link. IEEE J Solid State Circuits 50(8):1741–1753CrossRef
84.
Zurück zum Zitat Meng M, Kiani M (2016) Design and optimization of ultrasonic wireless power transmission links for millimeter-sized biomedical implants. IEEE Trans Biomed Circuits Syst 11(1):98–107CrossRef Meng M, Kiani M (2016) Design and optimization of ultrasonic wireless power transmission links for millimeter-sized biomedical implants. IEEE Trans Biomed Circuits Syst 11(1):98–107CrossRef
85.
Zurück zum Zitat Rothe J, Frey O, Stettler A, Chen Y, Hierlemann A (2014) Fully integrated CMOS microsystem for electrochemical measurements on 32× 32 working electrodes at 90 frames per second. Anal Chem 86(13):6425–6432CrossRef Rothe J, Frey O, Stettler A, Chen Y, Hierlemann A (2014) Fully integrated CMOS microsystem for electrochemical measurements on 32× 32 working electrodes at 90 frames per second. Anal Chem 86(13):6425–6432CrossRef
86.
Zurück zum Zitat Hayashi K, Arata S, Murakami S, Nishio Y, Kobayashi A, Niitsu K (2018) A 6.1-nA fully integrated CMOS supply modulated OOK transmitter in 55-nm DDC CMOS for glasses-free, self-powered, and fuel-cell-embedded continuous glucose monitoring contact lens. IEEE Trans Circuits Syst II: Express Briefs 65(10):1360–1364 Hayashi K, Arata S, Murakami S, Nishio Y, Kobayashi A, Niitsu K (2018) A 6.1-nA fully integrated CMOS supply modulated OOK transmitter in 55-nm DDC CMOS for glasses-free, self-powered, and fuel-cell-embedded continuous glucose monitoring contact lens. IEEE Trans Circuits Syst II: Express Briefs 65(10):1360–1364
87.
Zurück zum Zitat Bermudez LE, Sangari FJ (2001) Cellular and molecular mechanisms of internalization of mycobacteria by host cells. Microbes Infect 3(1):37–42CrossRef Bermudez LE, Sangari FJ (2001) Cellular and molecular mechanisms of internalization of mycobacteria by host cells. Microbes Infect 3(1):37–42CrossRef
88.
Zurück zum Zitat Brackett DG et al (2020) Cholangiolar pattern and albumin in situ hybridisation enable a diagnosis of intrahepatic cholangiocarcinoma. J Clin Pathol 73(1):23–29CrossRef Brackett DG et al (2020) Cholangiolar pattern and albumin in situ hybridisation enable a diagnosis of intrahepatic cholangiocarcinoma. J Clin Pathol 73(1):23–29CrossRef
89.
Zurück zum Zitat Wang A et al (2019) Diagnostic value of negative enrichment and immune fluorescence in situ hybridization for intraperitoneal free cancer cells of gastric cancer. Chin J Cancer Res 31(6):945–954CrossRef Wang A et al (2019) Diagnostic value of negative enrichment and immune fluorescence in situ hybridization for intraperitoneal free cancer cells of gastric cancer. Chin J Cancer Res 31(6):945–954CrossRef
90.
Zurück zum Zitat Blair E et al (2020) Test structures for developing packaging for implantable sensors. IEEE Trans Semicond Manuf 33(2):224–231CrossRef Blair E et al (2020) Test structures for developing packaging for implantable sensors. IEEE Trans Semicond Manuf 33(2):224–231CrossRef
91.
Zurück zum Zitat Manara MC, Pasello M, Scotlandi K (2018) CD99: a cell surface protein with an oncojanus role in tumors. Genes 9(3):159CrossRef Manara MC, Pasello M, Scotlandi K (2018) CD99: a cell surface protein with an oncojanus role in tumors. Genes 9(3):159CrossRef
92.
Zurück zum Zitat Berglund J (2018) Technology you can swallow: moving beyond wearable sensors, researchers are creating ingestible ones. IEEE Pulse 9(1):15–18CrossRef Berglund J (2018) Technology you can swallow: moving beyond wearable sensors, researchers are creating ingestible ones. IEEE Pulse 9(1):15–18CrossRef
Metadaten
Titel
Advances in Electronic Biosensors
verfasst von
Ebrahim Ghafar-Zadeh
Saghi Forouhi
Tayebeh Azadmousavi
Copyright-Jahr
2025
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0099-4_5