Skip to main content

2018 | OriginalPaper | Buchkapitel

10. Advances in Structure Determination of G Protein-Coupled Receptors by SFX

verfasst von : Benjamin Stauch, Linda Johansson, Andrii Ishchenko, Gye Won Han, Alexander Batyuk, Vadim Cherezov

Erschienen in: X-ray Free Electron Lasers

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

G protein-coupled receptors (GPCRs) constitute the largest superfamily of membrane proteins, members of which are involved in regulation of critical sensory and physiological processes in the human body. High-resolution GPCR structures are essential for the elucidation of the molecular mechanisms of signal transduction, and for the rational design of more effective therapeutics. GPCR structure determination is, however, hampered by challenges in their expression, stabilization, and crystallization. The recent emergence of X-ray free electron lasers (FELs), and establishment of serial femtosecond crystallography (SFX) have advanced the field of structural biology by enabling access to high-resolution structure and dynamics of challenging to crystallize and radiation damage-sensitive macromolecules. In this chapter we outline relevant SFX technology developments and its applications to structural studies of GPCRs, shedding light on ligand binding to antitumor and anti-addiction targets, uncovering molecular mechanisms behind distinct functions of angiotensin receptors, elucidating full-length structures of multidomain class B and Frizzled receptors, and revealing details of interactions between GPCRs and arrestins.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Heng, B. C., Aubel, D., & Fussenegger, M. (2013). An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnology Advances, 31(8), 1676–1694.PubMedCrossRef Heng, B. C., Aubel, D., & Fussenegger, M. (2013). An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnology Advances, 31(8), 1676–1694.PubMedCrossRef
2.
Zurück zum Zitat Venkatakrishnan, A. J., Deupi, X., Lebon, G., Tate, C. G., Schertler, G. F., & Babu, M. M. (2013). Molecular signatures of G-protein-coupled receptors. Nature, 494(7436), 185–194.PubMedCrossRef Venkatakrishnan, A. J., Deupi, X., Lebon, G., Tate, C. G., Schertler, G. F., & Babu, M. M. (2013). Molecular signatures of G-protein-coupled receptors. Nature, 494(7436), 185–194.PubMedCrossRef
3.
Zurück zum Zitat Audet, M., & Bouvier, M. (2012). Restructuring G-protein- coupled receptor activation. Cell, 151(1), 14–23.PubMedCrossRef Audet, M., & Bouvier, M. (2012). Restructuring G-protein- coupled receptor activation. Cell, 151(1), 14–23.PubMedCrossRef
4.
Zurück zum Zitat Galandrin, S., Oligny-Longpre, G., & Bouvier, M. (2007). The evasive nature of drug efficacy: Implications for drug discovery. Trends in Pharmacological Sciences, 28(8), 423–430.PubMedCrossRef Galandrin, S., Oligny-Longpre, G., & Bouvier, M. (2007). The evasive nature of drug efficacy: Implications for drug discovery. Trends in Pharmacological Sciences, 28(8), 423–430.PubMedCrossRef
5.
Zurück zum Zitat Rajagopal, S., Rajagopal, K., & Lefkowitz, R. J. (2010). Teaching old receptors new tricks: Biasing seven-transmembrane receptors. Nature Reviews Drug Discovery, 9(5), 373–386.PubMedPubMedCentralCrossRef Rajagopal, S., Rajagopal, K., & Lefkowitz, R. J. (2010). Teaching old receptors new tricks: Biasing seven-transmembrane receptors. Nature Reviews Drug Discovery, 9(5), 373–386.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Overington, J. P., Al-Lazikani, B., & Hopkins, A. L. (2006). How many drug targets are there? Nature Reviews Drug Discovery, 5(12), 993–996.PubMedCrossRef Overington, J. P., Al-Lazikani, B., & Hopkins, A. L. (2006). How many drug targets are there? Nature Reviews Drug Discovery, 5(12), 993–996.PubMedCrossRef
7.
Zurück zum Zitat Santos, R., Ursu, O., Gaulton, A., Bento, A. P., Donadi, R. S., Bologa, C. G., et al. (2017). A comprehensive map of molecular drug targets. Nature Reviews Drug Discovery, 16(1), 19–34.PubMedCrossRef Santos, R., Ursu, O., Gaulton, A., Bento, A. P., Donadi, R. S., Bologa, C. G., et al. (2017). A comprehensive map of molecular drug targets. Nature Reviews Drug Discovery, 16(1), 19–34.PubMedCrossRef
8.
Zurück zum Zitat Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schioth, H. N., & Gloriam, D. E. (2017). Trends in GPCR drug discovery: New agents, targets and indications. Nature Reviews Drug Discovery, 16(12), 829–842.PubMedCrossRefPubMedCentral Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schioth, H. N., & Gloriam, D. E. (2017). Trends in GPCR drug discovery: New agents, targets and indications. Nature Reviews Drug Discovery, 16(12), 829–842.PubMedCrossRefPubMedCentral
9.
Zurück zum Zitat Chung, S., Funakoshi, T., & Civelli, O. (2008). Orphan GPCR research. British Journal of Pharmacology, 153(Suppl. 1), S339–S346.PubMed Chung, S., Funakoshi, T., & Civelli, O. (2008). Orphan GPCR research. British Journal of Pharmacology, 153(Suppl. 1), S339–S346.PubMed
11.
Zurück zum Zitat Heydenreich, F. M., Vuckovic, Z., Matkovic, M., & Veprintsev, D. B. (2015). Stabilization of G protein-coupled receptors by point mutations. Frontiers in Pharmacology, 6, 82.PubMedPubMedCentralCrossRef Heydenreich, F. M., Vuckovic, Z., Matkovic, M., & Veprintsev, D. B. (2015). Stabilization of G protein-coupled receptors by point mutations. Frontiers in Pharmacology, 6, 82.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Chun, E., Thompson, A. A., Liu, W., Roth, C. B., Griffith, M. T., Katritch, V., et al. (2012). Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure, 20(6), 967–976.PubMedPubMedCentralCrossRef Chun, E., Thompson, A. A., Liu, W., Roth, C. B., Griffith, M. T., Katritch, V., et al. (2012). Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure, 20(6), 967–976.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Smith, J. L., Fischetti, R. F., & Yamamoto, M. (2012). Micro-crystallography comes of age. Current Opinion in Structural Biology, 22(5), 602–612.PubMedPubMedCentralCrossRef Smith, J. L., Fischetti, R. F., & Yamamoto, M. (2012). Micro-crystallography comes of age. Current Opinion in Structural Biology, 22(5), 602–612.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Jahnichen, S., Blanchetot, C., Maussang, D., Gonzalez-Pajuelo, M., Chow, K. Y., Bosch, L., et al. (2010). CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proceedings of the National Academy of Sciences of the United States of America, 107(47), 20565–20570.PubMedPubMedCentralCrossRef Jahnichen, S., Blanchetot, C., Maussang, D., Gonzalez-Pajuelo, M., Chow, K. Y., Bosch, L., et al. (2010). CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proceedings of the National Academy of Sciences of the United States of America, 107(47), 20565–20570.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Mujic-Delic, A., de Wit, R. H., Verkaar, F., & Smit, M. J. (2014). GPCR-targeting nanobodies: Attractive research tools, diagnostics, and therapeutics. Trends in Pharmacological Sciences, 35(5), 247–255.PubMedCrossRef Mujic-Delic, A., de Wit, R. H., Verkaar, F., & Smit, M. J. (2014). GPCR-targeting nanobodies: Attractive research tools, diagnostics, and therapeutics. Trends in Pharmacological Sciences, 35(5), 247–255.PubMedCrossRef
17.
Zurück zum Zitat Ghosh, E., Kumari, P., Jaiman, D., & Shukla, A. K. (2015). Methodological advances: The unsung heroes of the GPCR structural revolution. Nature Reviews Molecular Cell Biology, 16(2), 69–81.PubMedCrossRef Ghosh, E., Kumari, P., Jaiman, D., & Shukla, A. K. (2015). Methodological advances: The unsung heroes of the GPCR structural revolution. Nature Reviews Molecular Cell Biology, 16(2), 69–81.PubMedCrossRef
18.
Zurück zum Zitat Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Rasmussen, S. G., Thian, F. S., Kobilka, T. S., et al. (2007). High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science, 318(5854), 1258–1265.PubMedPubMedCentralCrossRef Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Rasmussen, S. G., Thian, F. S., Kobilka, T. S., et al. (2007). High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science, 318(5854), 1258–1265.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Stevens, R. C., Cherezov, V., Katritch, V., Abagyan, R., Kuhn, P., Rosen, H., et al. (2013). The GPCR network: A large-scale collaboration to determine human GPCR structure and function. Nature Reviews Drug Discovery, 12(1), 25–34.PubMedCrossRef Stevens, R. C., Cherezov, V., Katritch, V., Abagyan, R., Kuhn, P., Rosen, H., et al. (2013). The GPCR network: A large-scale collaboration to determine human GPCR structure and function. Nature Reviews Drug Discovery, 12(1), 25–34.PubMedCrossRef
20.
Zurück zum Zitat Carpenter, B., Nehme, R., Warne, T., Leslie, A. G., & Tate, C. G. (2016). Structure of the adenosine A (2A) receptor bound to an engineered G protein. Nature, 536(7614), 104–107.PubMedPubMedCentralCrossRef Carpenter, B., Nehme, R., Warne, T., Leslie, A. G., & Tate, C. G. (2016). Structure of the adenosine A (2A) receptor bound to an engineered G protein. Nature, 536(7614), 104–107.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Kang, Y., Zhou, X. E., Gao, X., He, Y., Liu, W., Ishchenko, A., et al. (2015). Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 523(7562), 561–567.PubMedPubMedCentralCrossRef Kang, Y., Zhou, X. E., Gao, X., He, Y., Liu, W., Ishchenko, A., et al. (2015). Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 523(7562), 561–567.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Rasmussen, S. G., DeVree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Kobilka, T. S., et al. (2011). Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature, 477(7366), 549–555.PubMedPubMedCentralCrossRef Rasmussen, S. G., DeVree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Kobilka, T. S., et al. (2011). Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature, 477(7366), 549–555.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Schioth, H. B., & Fredriksson, R. (2005). The GRAFS classification system of G-protein coupled receptors in comparative perspective. General and Comparative Endocrinology, 142(1–2), 94–101. PubMedCrossRef Schioth, H. B., & Fredriksson, R. (2005). The GRAFS classification system of G-protein coupled receptors in comparative perspective. General and Comparative Endocrinology, 142(1–2), 94–101. PubMedCrossRef
24.
Zurück zum Zitat Pal, K., Melcher, K., & Xu, H. E. (2012). Structure and mechanism for recognition of peptide hormones by class B G-protein-coupled receptors. Acta Pharmacologica Sinica, 33(3), 300–311.PubMedPubMedCentralCrossRef Pal, K., Melcher, K., & Xu, H. E. (2012). Structure and mechanism for recognition of peptide hormones by class B G-protein-coupled receptors. Acta Pharmacologica Sinica, 33(3), 300–311.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Kniazeff, J., Prezeau, L., Rondard, P., Pin, J. P., & Goudet, C. (2011). Dimers and beyond: The functional puzzles of class C GPCRs. Pharmacology & Therapeutics, 130(1), 9–25.CrossRef Kniazeff, J., Prezeau, L., Rondard, P., Pin, J. P., & Goudet, C. (2011). Dimers and beyond: The functional puzzles of class C GPCRs. Pharmacology & Therapeutics, 130(1), 9–25.CrossRef
26.
Zurück zum Zitat Zhang, H., Qiao, A., Yang, D., Yang, L., Dai, A., de Graaf, C., et al. (2017). Structure of the full-length glucagon class B G-protein-coupled receptor. Nature, 546(7657), 259–264.PubMedPubMedCentralCrossRef Zhang, H., Qiao, A., Yang, D., Yang, L., Dai, A., de Graaf, C., et al. (2017). Structure of the full-length glucagon class B G-protein-coupled receptor. Nature, 546(7657), 259–264.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Zhang, X., Zhao, F., Wu, Y., Yang, J., Han, G. W., Zhao, S., et al. (2017). Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand. Nature Communications, 8, 15383.PubMedPubMedCentralCrossRef Zhang, X., Zhao, F., Wu, Y., Yang, J., Han, G. W., Zhao, S., et al. (2017). Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand. Nature Communications, 8, 15383.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Ballesteros, J. A., & Weinstein, H. (1995). Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. In C. S. Stuart (Ed.), Methods in neurosciences (pp. 366–428). Cambridge, MA: Academic Press. Ballesteros, J. A., & Weinstein, H. (1995). Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. In C. S. Stuart (Ed.), Methods in neurosciences (pp. 366–428). Cambridge, MA: Academic Press.
29.
Zurück zum Zitat Isberg, V., de Graaf, C., Bortolato, A., Cherezov, V., Katritch, V., Marshall, F. H., et al. (2015). Generic GPCR residue numbers—Aligning topology maps while minding the gaps. Trends in Pharmacological Sciences, 36(1), 22–31.PubMedCrossRef Isberg, V., de Graaf, C., Bortolato, A., Cherezov, V., Katritch, V., Marshall, F. H., et al. (2015). Generic GPCR residue numbers—Aligning topology maps while minding the gaps. Trends in Pharmacological Sciences, 36(1), 22–31.PubMedCrossRef
30.
Zurück zum Zitat Weierstall, U., James, D., Wang, C., White, T. A., Wang, D., Liu, W., et al. (2014). Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nature Communications, 5, 3309.PubMedCrossRef Weierstall, U., James, D., Wang, C., White, T. A., Wang, D., Liu, W., et al. (2014). Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nature Communications, 5, 3309.PubMedCrossRef
31.
Zurück zum Zitat Johansson, L. C., Stauch, B., Ishchenko, A., & Cherezov, V. (2017). A bright future for serial femtosecond crystallography with XFELs. Trends in Biochemical Sciences, 42(9), 749–762.PubMedPubMedCentralCrossRef Johansson, L. C., Stauch, B., Ishchenko, A., & Cherezov, V. (2017). A bright future for serial femtosecond crystallography with XFELs. Trends in Biochemical Sciences, 42(9), 749–762.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Ishchenko, A., Cherezov, V., & Liu, W. (2016). Preparation and delivery of protein microcrystals in lipidic cubic phase for serial femtosecond crystallography. Journal of Visualized Experiments, 115, e54463. Ishchenko, A., Cherezov, V., & Liu, W. (2016). Preparation and delivery of protein microcrystals in lipidic cubic phase for serial femtosecond crystallography. Journal of Visualized Experiments, 115, e54463.
33.
Zurück zum Zitat Liu, W., Ishchenko, A., & Cherezov, V. (2014). Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography. Nature Protocols, 9(9), 2123–2134.PubMedPubMedCentralCrossRef Liu, W., Ishchenko, A., & Cherezov, V. (2014). Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography. Nature Protocols, 9(9), 2123–2134.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Fenalti, G., Zatsepin, N. A., Betti, C., Giguere, P., Han, G. W., Ishchenko, A., et al. (2015). Structural basis for bifunctional peptide recognition at human delta-opioid receptor. Nature Structural & Molecular Biology, 22(3), 265–268.CrossRef Fenalti, G., Zatsepin, N. A., Betti, C., Giguere, P., Han, G. W., Ishchenko, A., et al. (2015). Structural basis for bifunctional peptide recognition at human delta-opioid receptor. Nature Structural & Molecular Biology, 22(3), 265–268.CrossRef
35.
Zurück zum Zitat Zhang, H., Unal, H., Gati, C., Han, G. W., Liu, W., Zatsepin, N. A., et al. (2015). Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell, 161(4), 833–844.PubMedPubMedCentralCrossRef Zhang, H., Unal, H., Gati, C., Han, G. W., Liu, W., Zatsepin, N. A., et al. (2015). Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell, 161(4), 833–844.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Zhang, H., Han, G. W., Batyuk, A., Ishchenko, A., White, K. L., Patel, N., et al. (2017). Structural basis for selectivity and diversity in angiotensin II receptors. Nature, 544(7650), 327–332.PubMedPubMedCentralCrossRef Zhang, H., Han, G. W., Batyuk, A., Ishchenko, A., White, K. L., Patel, N., et al. (2017). Structural basis for selectivity and diversity in angiotensin II receptors. Nature, 544(7650), 327–332.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Batyuk, A., Galli, L., Ishchenko, A., Han, G. W., Gati, C., Popov, P. A., et al. (2016). Native phasing of x-ray free-electron laser data for a G protein-coupled receptor. Science Advances, 2(9), e1600292.PubMedPubMedCentralCrossRef Batyuk, A., Galli, L., Ishchenko, A., Han, G. W., Gati, C., Popov, P. A., et al. (2016). Native phasing of x-ray free-electron laser data for a G protein-coupled receptor. Science Advances, 2(9), e1600292.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Ishchenko, A., Wacker, D., Kapoor, M., Zhang, A., Han, G. W., Basu, S., et al. (2017). Structural insights into the extracellular recognition of the human serotonin 2B receptor by an antibody. Proceedings of the National Academy of Sciences of the United States of America, 114(31), 8223–8228.PubMedPubMedCentralCrossRef Ishchenko, A., Wacker, D., Kapoor, M., Zhang, A., Han, G. W., Basu, S., et al. (2017). Structural insights into the extracellular recognition of the human serotonin 2B receptor by an antibody. Proceedings of the National Academy of Sciences of the United States of America, 114(31), 8223–8228.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Alexandrov, A. I., Mileni, M., Chien, E. Y., Hanson, M. A., & Stevens, R. C. (2008). Microscale fluorescent thermal stability assay for membrane proteins. Structure, 16(3), 351–359.PubMedCrossRef Alexandrov, A. I., Mileni, M., Chien, E. Y., Hanson, M. A., & Stevens, R. C. (2008). Microscale fluorescent thermal stability assay for membrane proteins. Structure, 16(3), 351–359.PubMedCrossRef
40.
Zurück zum Zitat Fenalti, G., Abola, E. E., Wang, C., Wu, B., & Cherezov, V. (2015). Fluorescence recovery after photobleaching in lipidic cubic phase (LCP-FRAP): A precrystallization assay for membrane proteins. Methods in Enzymology, 557, 417–437.PubMedCrossRef Fenalti, G., Abola, E. E., Wang, C., Wu, B., & Cherezov, V. (2015). Fluorescence recovery after photobleaching in lipidic cubic phase (LCP-FRAP): A precrystallization assay for membrane proteins. Methods in Enzymology, 557, 417–437.PubMedCrossRef
41.
Zurück zum Zitat Kissick, D. J., Wanapun, D., & Simpson, G. J. (2011). Second-order nonlinear optical imaging of chiral crystals. Annual Review of Analytical Chemistry, 4, 419–437.PubMedCrossRef Kissick, D. J., Wanapun, D., & Simpson, G. J. (2011). Second-order nonlinear optical imaging of chiral crystals. Annual Review of Analytical Chemistry, 4, 419–437.PubMedCrossRef
42.
Zurück zum Zitat Barnes, C. O., Kovaleva, E. G., Fu, X., Stevenson, H. P., Brewster, A. S., DePonte, D. P., et al. (2016). Assessment of microcrystal quality by transmission electron microscopy for efficient serial femtosecond crystallography. Archives of Biochemistry and Biophysics, 602, 61–68.PubMedPubMedCentralCrossRef Barnes, C. O., Kovaleva, E. G., Fu, X., Stevenson, H. P., Brewster, A. S., DePonte, D. P., et al. (2016). Assessment of microcrystal quality by transmission electron microscopy for efficient serial femtosecond crystallography. Archives of Biochemistry and Biophysics, 602, 61–68.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Zhou, X. E., He, Y., de Waal, P. W., Gao, X., Kang, Y., Van Eps, N., et al. (2017). Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell, 170(3), 457–469 e13.PubMedPubMedCentralCrossRef Zhou, X. E., He, Y., de Waal, P. W., Gao, X., Kang, Y., Van Eps, N., et al. (2017). Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell, 170(3), 457–469 e13.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Boutet, S., & Williams, G. J. (2010). The coherent X-ray imaging (CXI) instrument at the linac coherent light source (LCLS). New Journal of Physics, 12(3), 035024.CrossRef Boutet, S., & Williams, G. J. (2010). The coherent X-ray imaging (CXI) instrument at the linac coherent light source (LCLS). New Journal of Physics, 12(3), 035024.CrossRef
45.
Zurück zum Zitat DePonte, D. P., Weierstall, U., Schmidt, K., Warner, J., Starodub, D., Spence, J. C. H., et al. (2008). Gas dynamic virtual nozzle for generation of microscopic droplet streams. Journal of Physics D-Applied Physics, 41(19), 195505.CrossRef DePonte, D. P., Weierstall, U., Schmidt, K., Warner, J., Starodub, D., Spence, J. C. H., et al. (2008). Gas dynamic virtual nozzle for generation of microscopic droplet streams. Journal of Physics D-Applied Physics, 41(19), 195505.CrossRef
46.
Zurück zum Zitat Brehm, W., & Diederichs, K. (2014). Breaking the indexing ambiguity in serial crystallography. Acta Crystallographica. Section D, Biological Crystallography, 70(1), 101–109.PubMedCrossRef Brehm, W., & Diederichs, K. (2014). Breaking the indexing ambiguity in serial crystallography. Acta Crystallographica. Section D, Biological Crystallography, 70(1), 101–109.PubMedCrossRef
47.
Zurück zum Zitat Ginn, H. M., Roedig, P., Kuo, A., Evans, G., Sauter, N. K., Ernst, O. P., et al. (2016). TakeTwo: An indexing algorithm suited to still images with known crystal parameters. Acta Crystallographica Section D: Structural Biology, 72(8), 956–965.CrossRefPubMedCentral Ginn, H. M., Roedig, P., Kuo, A., Evans, G., Sauter, N. K., Ernst, O. P., et al. (2016). TakeTwo: An indexing algorithm suited to still images with known crystal parameters. Acta Crystallographica Section D: Structural Biology, 72(8), 956–965.CrossRefPubMedCentral
48.
Zurück zum Zitat Mariani, V., Morgan, A., Yoon, C. H., Lane, T. J., White, T. A., O’Grady, C., et al. (2016). OnDA: Online data analysis and feedback for serial X-ray imaging. Journal of Applied Crystallography, 49(3), 1073–1080.PubMedPubMedCentralCrossRef Mariani, V., Morgan, A., Yoon, C. H., Lane, T. J., White, T. A., O’Grady, C., et al. (2016). OnDA: Online data analysis and feedback for serial X-ray imaging. Journal of Applied Crystallography, 49(3), 1073–1080.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Sauter, N. K. (2015). XFEL diffraction: Developing processing methods to optimize data quality. Journal of Synchrotron Radiation, 22(2), 239–248.PubMedPubMedCentralCrossRef Sauter, N. K. (2015). XFEL diffraction: Developing processing methods to optimize data quality. Journal of Synchrotron Radiation, 22(2), 239–248.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Sauter, N. K., Hattne, J., Brewster, A. S., Echols, N., Zwart, P. H., & Adams, P. D. (2014). Improved crystal orientation and physical properties from single-shot XFEL stills. Acta Crystallographica Section D: Biological Crystallography, 70(12), 3299–3309.CrossRefPubMedCentral Sauter, N. K., Hattne, J., Brewster, A. S., Echols, N., Zwart, P. H., & Adams, P. D. (2014). Improved crystal orientation and physical properties from single-shot XFEL stills. Acta Crystallographica Section D: Biological Crystallography, 70(12), 3299–3309.CrossRefPubMedCentral
51.
Zurück zum Zitat White, T. A. (2014). Post-refinement method for snapshot serial crystallography. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1647), 20130330.PubMedPubMedCentralCrossRef White, T. A. (2014). Post-refinement method for snapshot serial crystallography. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1647), 20130330.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat White, T. A., Mariani, V., Brehm, W., Yefanov, O., Barty, A., Beyerlein, K. R., et al. (2016). Recent developments in CrystFEL. Journal of Applied Crystallography, 49(2), 680–689.PubMedPubMedCentralCrossRef White, T. A., Mariani, V., Brehm, W., Yefanov, O., Barty, A., Beyerlein, K. R., et al. (2016). Recent developments in CrystFEL. Journal of Applied Crystallography, 49(2), 680–689.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Liu, W., Wacker, D., Gati, C., Han, G. W., James, D., Wang, D., et al. (2013). Serial femtosecond crystallography of G protein-coupled receptors. Science, 342(6165), 1521–1524.PubMedPubMedCentralCrossRef Liu, W., Wacker, D., Gati, C., Han, G. W., James, D., Wang, D., et al. (2013). Serial femtosecond crystallography of G protein-coupled receptors. Science, 342(6165), 1521–1524.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Wacker, D., Wang, C., Katritch, V., Han, G. W., Huang, X. P., Vardy, E., et al. (2013). Structural features for functional selectivity at serotonin receptors. Science, 340(6132), 615–619.PubMedPubMedCentralCrossRef Wacker, D., Wang, C., Katritch, V., Han, G. W., Huang, X. P., Vardy, E., et al. (2013). Structural features for functional selectivity at serotonin receptors. Science, 340(6132), 615–619.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Fraser, J. S., van den Bedem, H., Samelson, A. J., Lang, P. T., Holton, J. M., Echols, N., et al. (2011). Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16247–16252.PubMedPubMedCentralCrossRef Fraser, J. S., van den Bedem, H., Samelson, A. J., Lang, P. T., Holton, J. M., Echols, N., et al. (2011). Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16247–16252.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Wang, C., Wu, H., Evron, T., Vardy, E., Han, G. W., Huang, X. P., et al. (2014). Structural basis for smoothened receptor modulation and chemoresistance to anticancer drugs. Nature Communications, 5, 4355.PubMedCrossRef Wang, C., Wu, H., Evron, T., Vardy, E., Han, G. W., Huang, X. P., et al. (2014). Structural basis for smoothened receptor modulation and chemoresistance to anticancer drugs. Nature Communications, 5, 4355.PubMedCrossRef
57.
Zurück zum Zitat Abdelhamid, E. E., Sultana, M., Portoghese, P. S., & Takemori, A. E. (1991). Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. The Journal of Pharmacology and Experimental Therapeutics, 258(1), 299–303.PubMed Abdelhamid, E. E., Sultana, M., Portoghese, P. S., & Takemori, A. E. (1991). Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. The Journal of Pharmacology and Experimental Therapeutics, 258(1), 299–303.PubMed
58.
Zurück zum Zitat Zhang, H., Unal, H., Desnoyer, R., Han, G. W., Patel, N., Katritch, V., et al. (2015). Structural basis for ligand recognition and functional selectivity at angiotensin receptor. The Journal of Biological Chemistry, 290(49), 29127–29139.PubMedPubMedCentralCrossRef Zhang, H., Unal, H., Desnoyer, R., Han, G. W., Patel, N., Katritch, V., et al. (2015). Structural basis for ligand recognition and functional selectivity at angiotensin receptor. The Journal of Biological Chemistry, 290(49), 29127–29139.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Guimond, M. O., & Gallo-Payet, N. (2012). How does angiotensin AT(2) receptor activation help neuronal differentiation and improve neuronal pathological situations? Frontiers in Endocrinology, 3, 164.PubMedPubMedCentralCrossRef Guimond, M. O., & Gallo-Payet, N. (2012). How does angiotensin AT(2) receptor activation help neuronal differentiation and improve neuronal pathological situations? Frontiers in Endocrinology, 3, 164.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Porrello, E. R., Delbridge, L. M., & Thomas, W. G. (2009). The angiotensin II type 2 (AT2) receptor: An enigmatic seven transmembrane receptor. Frontiers in Bioscience, 14, 958–972.CrossRef Porrello, E. R., Delbridge, L. M., & Thomas, W. G. (2009). The angiotensin II type 2 (AT2) receptor: An enigmatic seven transmembrane receptor. Frontiers in Bioscience, 14, 958–972.CrossRef
61.
Zurück zum Zitat Nahmias, C., & Strosberg, A. D. (1995). The angiotensin AT2 receptor: Searching for signal-transduction pathways and physiological function. Trends in Pharmacological Sciences, 16(7), 223–225.PubMedCrossRef Nahmias, C., & Strosberg, A. D. (1995). The angiotensin AT2 receptor: Searching for signal-transduction pathways and physiological function. Trends in Pharmacological Sciences, 16(7), 223–225.PubMedCrossRef
62.
Zurück zum Zitat Nouet, S., & Nahmias, C. (2000). Signal transduction from the angiotensin II AT2 receptor. Trends in Endocrinology and Metabolism, 11(1), 1–6.PubMedCrossRef Nouet, S., & Nahmias, C. (2000). Signal transduction from the angiotensin II AT2 receptor. Trends in Endocrinology and Metabolism, 11(1), 1–6.PubMedCrossRef
63.
Zurück zum Zitat Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., et al. (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science, 289(5480), 739–745.PubMedCrossRef Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., et al. (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science, 289(5480), 739–745.PubMedCrossRef
64.
Zurück zum Zitat Park, J. H., Scheerer, P., Hofmann, K. P., Choe, H. W., & Ernst, O. P. (2008). Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature, 454(7201), 183–187.PubMedCrossRef Park, J. H., Scheerer, P., Hofmann, K. P., Choe, H. W., & Ernst, O. P. (2008). Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature, 454(7201), 183–187.PubMedCrossRef
65.
Zurück zum Zitat Choe, H. W., Kim, Y. J., Park, J. H., Morizumi, T., Pai, E. F., Krauss, N., et al. (2011). Crystal structure of metarhodopsin II. Nature, 471(7340), 651–655.PubMedCrossRef Choe, H. W., Kim, Y. J., Park, J. H., Morizumi, T., Pai, E. F., Krauss, N., et al. (2011). Crystal structure of metarhodopsin II. Nature, 471(7340), 651–655.PubMedCrossRef
66.
Zurück zum Zitat Hirsch, J. A., Schubert, C., Gurevich, V. V., & Sigler, P. B. (1999). The 2.8 A crystal structure of visual arrestin: A model for arrestin’s regulation. Cell, 97(2), 257–269.PubMedCrossRef Hirsch, J. A., Schubert, C., Gurevich, V. V., & Sigler, P. B. (1999). The 2.8 A crystal structure of visual arrestin: A model for arrestin’s regulation. Cell, 97(2), 257–269.PubMedCrossRef
67.
Zurück zum Zitat Kim, Y. J., Hofmann, K. P., Ernst, O. P., Scheerer, P., Choe, H. W., & Sommer, M. E. (2013). Crystal structure of pre-activated arrestin p44. Nature, 497(7447), 142–146.PubMedCrossRef Kim, Y. J., Hofmann, K. P., Ernst, O. P., Scheerer, P., Choe, H. W., & Sommer, M. E. (2013). Crystal structure of pre-activated arrestin p44. Nature, 497(7447), 142–146.PubMedCrossRef
68.
Zurück zum Zitat Zhou, X. E., Gao, X., Barty, A., Kang, Y., He, Y., Liu, W., et al. (2016). X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex. Scientific Data, 3, 160021.PubMedPubMedCentralCrossRef Zhou, X. E., Gao, X., Barty, A., Kang, Y., He, Y., Liu, W., et al. (2016). X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex. Scientific Data, 3, 160021.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Siu, F. Y., He, M., de Graaf, C., Han, G. W., Yang, D., Zhang, Z., et al. (2013). Structure of the human glucagon class B G-protein-coupled receptor. Nature, 499(7459), 444–449.PubMedCrossRef Siu, F. Y., He, M., de Graaf, C., Han, G. W., Yang, D., Zhang, Z., et al. (2013). Structure of the human glucagon class B G-protein-coupled receptor. Nature, 499(7459), 444–449.PubMedCrossRef
70.
Zurück zum Zitat Wang, C., Wu, H., Katritch, V., Han, G. W., Huang, X. P., Liu, W., et al. (2013). Structure of the human smoothened receptor bound to an antitumour agent. Nature, 497(7449), 338–343.PubMedPubMedCentralCrossRef Wang, C., Wu, H., Katritch, V., Han, G. W., Huang, X. P., Liu, W., et al. (2013). Structure of the human smoothened receptor bound to an antitumour agent. Nature, 497(7449), 338–343.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Nachtergaele, S., Mydock, L. K., Krishnan, K., Rammohan, J., Schlesinger, P. H., Covey, D. F., et al. (2012). Oxysterols are allosteric activators of the oncoprotein smoothened. Nature Chemical Biology, 8(2), 211–220.PubMedPubMedCentralCrossRef Nachtergaele, S., Mydock, L. K., Krishnan, K., Rammohan, J., Schlesinger, P. H., Covey, D. F., et al. (2012). Oxysterols are allosteric activators of the oncoprotein smoothened. Nature Chemical Biology, 8(2), 211–220.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Gorojankina, T. (2016). Hedgehog signaling pathway: A novel model and molecular mechanisms of signal transduction. Cellular and Molecular Life Sciences, 73(7), 1317–1332.PubMedCrossRef Gorojankina, T. (2016). Hedgehog signaling pathway: A novel model and molecular mechanisms of signal transduction. Cellular and Molecular Life Sciences, 73(7), 1317–1332.PubMedCrossRef
73.
Zurück zum Zitat Byrne, E. F. X., Sircar, R., Miller, P. S., Hedger, G., Luchetti, G., Nachtergaele, S., et al. (2016). Structural basis of smoothened regulation by its extracellular domains. Nature, 535(7613), 517–522.PubMedPubMedCentralCrossRef Byrne, E. F. X., Sircar, R., Miller, P. S., Hedger, G., Luchetti, G., Nachtergaele, S., et al. (2016). Structural basis of smoothened regulation by its extracellular domains. Nature, 535(7613), 517–522.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Bortolato, A., Dore, A. S., Hollenstein, K., Tehan, B. G., Mason, J. S., & Marshall, F. H. (2014). Structure of class B GPCRs: New horizons for drug discovery. British Journal of Pharmacology, 171(13), 3132–3145.PubMedPubMedCentralCrossRef Bortolato, A., Dore, A. S., Hollenstein, K., Tehan, B. G., Mason, J. S., & Marshall, F. H. (2014). Structure of class B GPCRs: New horizons for drug discovery. British Journal of Pharmacology, 171(13), 3132–3145.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Jazayeri, A., Dore, A. S., Lamb, D., Krishnamurthy, H., Southall, S. M., Baig, A. H., et al. (2016). Extra-helical binding site of a glucagon receptor antagonist. Nature, 533(7602), 274–277.PubMedCrossRef Jazayeri, A., Dore, A. S., Lamb, D., Krishnamurthy, H., Southall, S. M., Baig, A. H., et al. (2016). Extra-helical binding site of a glucagon receptor antagonist. Nature, 533(7602), 274–277.PubMedCrossRef
76.
Zurück zum Zitat Hutchings, C. J., Koglin, M., Olson, W. C., & Marshall, F. H. (2017). Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nature Reviews Drug Discovery, 16(9), 787–810.PubMedCrossRef Hutchings, C. J., Koglin, M., Olson, W. C., & Marshall, F. H. (2017). Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nature Reviews Drug Discovery, 16(9), 787–810.PubMedCrossRef
77.
Zurück zum Zitat Hay, M., Thomas, D. W., Craighead, J. L., Economides, C., & Rosenthal, J. (2014). Clinical development success rates for investigational drugs. Nature Biotechnology, 32(1), 40–51.PubMedCrossRef Hay, M., Thomas, D. W., Craighead, J. L., Economides, C., & Rosenthal, J. (2014). Clinical development success rates for investigational drugs. Nature Biotechnology, 32(1), 40–51.PubMedCrossRef
78.
Zurück zum Zitat Wang, C., Jiang, Y., Ma, J., Wu, H., Wacker, D., Katritch, V., et al. (2013). Structural basis for molecular recognition at serotonin receptors. Science, 340(6132), 610–614.PubMedPubMedCentralCrossRef Wang, C., Jiang, Y., Ma, J., Wu, H., Wacker, D., Katritch, V., et al. (2013). Structural basis for molecular recognition at serotonin receptors. Science, 340(6132), 610–614.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Barends, T. R., Foucar, L., Botha, S., Doak, R. B., Shoeman, R. L., Nass, K., et al. (2014). De novo protein crystal structure determination from X-ray free-electron laser data. Nature, 505(7482), 244–247.PubMedCrossRef Barends, T. R., Foucar, L., Botha, S., Doak, R. B., Shoeman, R. L., Nass, K., et al. (2014). De novo protein crystal structure determination from X-ray free-electron laser data. Nature, 505(7482), 244–247.PubMedCrossRef
80.
Zurück zum Zitat Yamashita, K., Pan, D., Okuda, T., Sugahara, M., Kodan, A., Yamaguchi, T., et al. (2015). An isomorphous replacement method for efficient de novo phasing for serial femtosecond crystallography. Scientific Reports, 5, 14017.PubMedPubMedCentralCrossRef Yamashita, K., Pan, D., Okuda, T., Sugahara, M., Kodan, A., Yamaguchi, T., et al. (2015). An isomorphous replacement method for efficient de novo phasing for serial femtosecond crystallography. Scientific Reports, 5, 14017.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Colletier, J. P., Sawaya, M. R., Gingery, M., Rodriguez, J. A., Cascio, D., Brewster, A. S., et al. (2016). De novo phasing with X-ray laser reveals mosquito larvicide BinAB structure. Nature, 539(7627), 43–47.PubMedPubMedCentralCrossRef Colletier, J. P., Sawaya, M. R., Gingery, M., Rodriguez, J. A., Cascio, D., Brewster, A. S., et al. (2016). De novo phasing with X-ray laser reveals mosquito larvicide BinAB structure. Nature, 539(7627), 43–47.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Wu, H., Wang, C., Gregory, K. J., Han, G. W., Cho, H. P., Xia, Y., et al. (2014). Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science, 344(6179), 58–64.PubMedPubMedCentralCrossRef Wu, H., Wang, C., Gregory, K. J., Han, G. W., Cho, H. P., Xia, Y., et al. (2014). Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science, 344(6179), 58–64.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Hendrickson, W. A., & Teeter, M. M. (1981). Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur. Nature, 290(5802), 107–113.PubMedPubMedCentralCrossRef Hendrickson, W. A., & Teeter, M. M. (1981). Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur. Nature, 290(5802), 107–113.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Nass, K., Meinhart, A., Barends, T. R., Foucar, L., Gorel, A., Aquila, A., et al. (2016). Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data. IUCrJ, 3(3), 180–191.PubMedPubMedCentralCrossRef Nass, K., Meinhart, A., Barends, T. R., Foucar, L., Gorel, A., Aquila, A., et al. (2016). Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data. IUCrJ, 3(3), 180–191.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Fenalti, G., Giguere, P. M., Katritch, V., Huang, X. P., Thompson, A. A., Cherezov, V., et al. (2014). Molecular control of delta-opioid receptor signalling. Nature, 506(7487), 191–196.PubMedPubMedCentralCrossRef Fenalti, G., Giguere, P. M., Katritch, V., Huang, X. P., Thompson, A. A., Cherezov, V., et al. (2014). Molecular control of delta-opioid receptor signalling. Nature, 506(7487), 191–196.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Liu, W., Chun, E., Thompson, A. A., Chubukov, P., Xu, F., Katritch, V., et al. (2012). Structural basis for allosteric regulation of GPCRs by sodium ions. Science, 337(6091), 232–236.PubMedPubMedCentralCrossRef Liu, W., Chun, E., Thompson, A. A., Chubukov, P., Xu, F., Katritch, V., et al. (2012). Structural basis for allosteric regulation of GPCRs by sodium ions. Science, 337(6091), 232–236.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Weinert, T., Olieric, N., Cheng, R., Brunle, S., James, D., Ozerov, D., et al. (2017). Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons. Nature Communications, 8(1), 542.PubMedPubMedCentralCrossRef Weinert, T., Olieric, N., Cheng, R., Brunle, S., James, D., Ozerov, D., et al. (2017). Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons. Nature Communications, 8(1), 542.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Hart, P., Boutet, S., Carini, G., Dragone, A., Duda, B., Freytag, D., et al. (2012). The cornell-SLAC pixel array detector at LCLS. Presented at 2012 Nuclear Science Symposium, Medical Imaging Conference Anaheim, CA. SLAC-PUB-15284. Hart, P., Boutet, S., Carini, G., Dragone, A., Duda, B., Freytag, D., et al. (2012). The cornell-SLAC pixel array detector at LCLS. Presented at 2012 Nuclear Science Symposium, Medical Imaging Conference Anaheim, CA. SLAC-PUB-15284.
89.
Zurück zum Zitat Barty, A., Kirian, R. A., Maia, F. R. N. C., Hantke, M., Yoon, C. H., White, T. A., et al. (2014). Cheetah: Software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data. Journal of Applied Crystallography, 47(3), 1118–1131.PubMedPubMedCentralCrossRef Barty, A., Kirian, R. A., Maia, F. R. N. C., Hantke, M., Yoon, C. H., White, T. A., et al. (2014). Cheetah: Software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data. Journal of Applied Crystallography, 47(3), 1118–1131.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat White, T. A., Kirian, R. A., Martin, A. V., Aquila, A., Nass, K., Barty, A., et al. (2012). CrystFEL: A software suite for snapshot serial crystallography. Journal of Applied Crystallography, 45(2), 335–341.CrossRef White, T. A., Kirian, R. A., Martin, A. V., Aquila, A., Nass, K., Barty, A., et al. (2012). CrystFEL: A software suite for snapshot serial crystallography. Journal of Applied Crystallography, 45(2), 335–341.CrossRef
91.
Zurück zum Zitat Conrad, C. E., Basu, S., James, D., Wang, D., Schaffer, A., Roy-Chowdhury, S., et al. (2015). A novel inert crystal delivery medium for serial femtosecond crystallography. IUCrJ, 2(4), 421–430.PubMedPubMedCentralCrossRef Conrad, C. E., Basu, S., James, D., Wang, D., Schaffer, A., Roy-Chowdhury, S., et al. (2015). A novel inert crystal delivery medium for serial femtosecond crystallography. IUCrJ, 2(4), 421–430.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Weierstall, U. (2014). Liquid sample delivery techniques for serial femtosecond crystallography. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1647), 20130337.PubMedPubMedCentralCrossRef Weierstall, U. (2014). Liquid sample delivery techniques for serial femtosecond crystallography. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1647), 20130337.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Latorraca, N. R., Venkatakrishnan, A. J., & Dror, R. O. (2017). GPCR dynamics: Structures in motion. Chemical Reviews, 117(1), 139–155.PubMedCrossRef Latorraca, N. R., Venkatakrishnan, A. J., & Dror, R. O. (2017). GPCR dynamics: Structures in motion. Chemical Reviews, 117(1), 139–155.PubMedCrossRef
94.
Zurück zum Zitat Congreve, M., Dias, J. M., & Marshall, F. H. (2014). Chapter one - structure-based drug design for G protein-coupled receptors. In G. Lawton & D. R. Witty (Eds.), Progress in medicinal chemistry (pp. 1–63). New York: Elsevier. Congreve, M., Dias, J. M., & Marshall, F. H. (2014). Chapter one - structure-based drug design for G protein-coupled receptors. In G. Lawton & D. R. Witty (Eds.), Progress in medicinal chemistry (pp. 1–63). New York: Elsevier.
Metadaten
Titel
Advances in Structure Determination of G Protein-Coupled Receptors by SFX
verfasst von
Benjamin Stauch
Linda Johansson
Andrii Ishchenko
Gye Won Han
Alexander Batyuk
Vadim Cherezov
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-00551-1_10

Neuer Inhalt