Skip to main content

2011 | OriginalPaper | Buchkapitel

9. Advancing Characterization of Materials with Atomic Force Microscopy-Based Electric Techniques

verfasst von : Sergei Magonov, John Alexander, Shijie Wu

Erschienen in: Scanning Probe Microscopy of Functional Materials

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multifrequency measurements in atomic force microscopy (AFM) are one of the main techniques advancing this method. Detection of the AFM probe response at different frequencies enables simultaneous and independent studies of individual constituents of overall tip–sample force and, therefore, begins to empower the advanced compositional mapping and quantitative examination of local mechanical, electromagnetic, and other properties of materials. This chapter describes the practical implementation of multifrequency measurements with a commercial instrument and, particularly, their use in AFM-based electric techniques (electric force microscopy (EFM), Kelvin force microscopy (KFM), and piezoresponse force microscopy (PFM)). One of the peculiarities of the multifrequency approach is multiple choices for a particular type of measurement. This demands a thorough evaluation of different permutations for finding the most sensitive and reliable experimental procedure. In case of EFM and KFM, the evaluation of amplitude modulation and frequency modulation detection of tip–sample electrostatic force during intermittent contact imaging revealed the more precise nature and higher spatial resolution of the frequency modulation studies. This technique has been applied for EFM and KFM imaging of various samples (metals, semiconductors, and organic self-assemblies) that have heterogeneities related to variations of work functions, strength and orientation of molecular dipoles and to a presence of surface charges. The presented results demonstrate the advanced capabilities of multifrequency measurements that are improving the nanoscale characterization of electric properties of materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Binnig, H. Rohrer, C. Gerber, and E. Weibel “Surface studies by scanning tunneling microscopy” Phys. Rev. Lett. 1982, 49, 57–61.CrossRef G. Binnig, H. Rohrer, C. Gerber, and E. Weibel “Surface studies by scanning tunneling microscopy” Phys. Rev. Lett. 1982, 49, 57–61.CrossRef
2.
Zurück zum Zitat G. Schmalz, “Uber Glätte und Ebenheit als physikalisches und physiologishes problem” Z. Vereines Deutscher Ingenieure 1929, Oct 12, 1461–1467. G. Schmalz, “Uber Glätte und Ebenheit als physikalisches und physiologishes problem” Z. Vereines Deutscher Ingenieure 1929, Oct 12, 1461–1467.
3.
Zurück zum Zitat R. Young, J. Ward, and F. Scire “The topographiner:An instrument for measuring surface microtopography” Rev. Sci. Instrum. 1972, 43, 999–1011.CrossRef R. Young, J. Ward, and F. Scire “The topographiner:An instrument for measuring surface microtopography” Rev. Sci. Instrum. 1972, 43, 999–1011.CrossRef
4.
Zurück zum Zitat G. Binnig, C. F. Quate, and Ch. Gerber “Atomic force microscope” Phys. Rev. Lett. 1986, 56, 930–933.CrossRef G. Binnig, C. F. Quate, and Ch. Gerber “Atomic force microscope” Phys. Rev. Lett. 1986, 56, 930–933.CrossRef
5.
Zurück zum Zitat S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, and J. Gurley “An atomic-resolution atomic-force microscope implemented using an optical lever” J. Appl. Phys. 1989, 65, 164.CrossRef S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, and J. Gurley “An atomic-resolution atomic-force microscope implemented using an optical lever” J. Appl. Phys. 1989, 65, 164.CrossRef
6.
Zurück zum Zitat G. Meyer, and N. M. Amer, “Novel optical approach to atomic force microscopy” Appl. Phys. Lett. 1988, 53, 1045.CrossRef G. Meyer, and N. M. Amer, “Novel optical approach to atomic force microscopy” Appl. Phys. Lett. 1988, 53, 1045.CrossRef
7.
Zurück zum Zitat Y. Martin, C. C. Williams, and H. K. Wickramasinghe “Atomic force microscope-force mapping and profiling on a sub 100-Å scale” J. Appl. Phys. 1987, 61, 4723–4729.CrossRef Y. Martin, C. C. Williams, and H. K. Wickramasinghe “Atomic force microscope-force mapping and profiling on a sub 100-Å scale” J. Appl. Phys. 1987, 61, 4723–4729.CrossRef
8.
Zurück zum Zitat T. Albrecht, P. Gruetter, D. Horne, and D. Rugar “Frequency modulation detection using high-Q cantilevers for enhanced force microscopy sensitivity” J. Appl. Phys. 1991, 61, 668.CrossRef T. Albrecht, P. Gruetter, D. Horne, and D. Rugar “Frequency modulation detection using high-Q cantilevers for enhanced force microscopy sensitivity” J. Appl. Phys. 1991, 61, 668.CrossRef
9.
Zurück zum Zitat Q. Zhong, D. Innis, K. Kjoller, and V. Elings “Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy” Surf. Sci. Lett. 1993, 290, L688–L692.CrossRef Q. Zhong, D. Innis, K. Kjoller, and V. Elings “Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy” Surf. Sci. Lett. 1993, 290, L688–L692.CrossRef
10.
Zurück zum Zitat T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate “Microfabrication of cantilever styli for atomic force microscope” J. Vac. Sci. Technol. A 1990, 8, 3386–3396.CrossRef T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate “Microfabrication of cantilever styli for atomic force microscope” J. Vac. Sci. Technol. A 1990, 8, 3386–3396.CrossRef
11.
Zurück zum Zitat O. Wolter, Th. Baer, and J. Greshner “Micromachined silicon sensors for scanning force microscopy” J. Vac. Sci. Technol. B 1991, 9, 1353–1357.CrossRef O. Wolter, Th. Baer, and J. Greshner “Micromachined silicon sensors for scanning force microscopy” J. Vac. Sci. Technol. B 1991, 9, 1353–1357.CrossRef
12.
Zurück zum Zitat F. J. Giessibl “Atomic resolution of the silicon (111)-(7×7) surface by atomic force microscopy” Science 1995, 267, 68–71.CrossRef F. J. Giessibl “Atomic resolution of the silicon (111)-(7×7) surface by atomic force micro­scopy” Science 1995, 267, 68–71.CrossRef
13.
Zurück zum Zitat Y. Sugawara, M. Ohta, H. Ueyama, and S. Morita “Defect motion on an InP(110) surface observed with noncontact atomic force microscopy” Science 1995, 270, 1646–1648.CrossRef Y. Sugawara, M. Ohta, H. Ueyama, and S. Morita “Defect motion on an InP(110) surface observed with noncontact atomic force microscopy” Science 1995, 270, 1646–1648.CrossRef
14.
Zurück zum Zitat T. Fukuma, M. Kimura, K. Kobayashi, K. Matsushige, and H. Yamada “Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy” Rev. Sci. Instrum. 2005, 76, 1–8. T. Fukuma, M. Kimura, K. Kobayashi, K. Matsushige, and H. Yamada “Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy” Rev. Sci. Instrum. 2005, 76, 1–8.
15.
Zurück zum Zitat N. A. Burnham, and R. J. Colton “Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope” J. Vac. Sci. Technol. A 1989, 7, 2906–2913.CrossRef N. A. Burnham, and R. J. Colton “Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope” J. Vac. Sci. Technol. A 1989, 7, 2906–2913.CrossRef
16.
Zurück zum Zitat S. Belikov, S. Magonov, N. Erina, L. Huang, C. Prater, V. Ginzburg, G. Meyers, R. McIntyre, and H. Lakrout “Theoretical modelling and implementation of elastic modulus measurement at the nanoscale using atomic force microscope, J. Phys. Conf. Ser., 2007, 61, 1303–1307.CrossRef S. Belikov, S. Magonov, N. Erina, L. Huang, C. Prater, V. Ginzburg, G. Meyers, R. McIntyre, and H. Lakrout “Theoretical modelling and implementation of elastic modulus measurement at the nanoscale using atomic force microscope, J. Phys. Conf. Ser., 2007, 61, 1303–1307.CrossRef
17.
Zurück zum Zitat O. Sahin, S. Magonov, C. Su, C. F. Quate, and O. Solgaard “An atomic force microscopy tip designed to measure time-varying nanomechanical forces” Nat. Nanotechnol. 2007, 2, 507–514.CrossRef O. Sahin, S. Magonov, C. Su, C. F. Quate, and O. Solgaard “An atomic force microscopy tip designed to measure time-varying nanomechanical forces” Nat. Nanotechnol. 2007, 2, 507–514.CrossRef
18.
Zurück zum Zitat A. F. Sarioglu, and O. Solgaard “Cantilevers with integrated sensor for time-resolved force measurements in tapping-mode atomic force microscopy” Appl. Phys. Lett. 2008, 93, 023114-3.CrossRef A. F. Sarioglu, and O. Solgaard “Cantilevers with integrated sensor for time-resolved force measurements in tapping-mode atomic force microscopy” Appl. Phys. Lett. 2008, 93, 023114-3.CrossRef
19.
Zurück zum Zitat Y. Martin, D. A. Abraham, and H. K. Wickramasinghe “High-resolution capacitance measurement and potentiometry by force microscopy” Appl. Phys. Lett. 1988, 52, 1103–10005.CrossRef Y. Martin, D. A. Abraham, and H. K. Wickramasinghe “High-resolution capacitance measurement and potentiometry by force microscopy” Appl. Phys. Lett. 1988, 52, 1103–10005.CrossRef
20.
Zurück zum Zitat V. B. Elings, and J. A. Gurley “Scanning probe microscope using stored data for vertical probe positioning” US Patent 5,308,974, 1994. V. B. Elings, and J. A. Gurley “Scanning probe microscope using stored data for vertical probe positioning” US Patent 5,308,974, 1994.
21.
Zurück zum Zitat S. Magonov “AFM in analysis of polymers” in Encyclopedia of Analytical Chemistry, (R. A. Meyers, Ed.), pp. 7432–7491, John Wiley & Sons Ltd, Chichester, 2000. S. Magonov “AFM in analysis of polymers” in Encyclopedia of Analytical Chemistry, (R. A. Meyers, Ed.), pp. 7432–7491, John Wiley & Sons Ltd, Chichester, 2000.
22.
Zurück zum Zitat S. Belikov, and S. Magonov “Classification of dynamic atomic force microscopy control codes based on asymptotic nonlinear mechanics”, 2008, submitted. S. Belikov, and S. Magonov “Classification of dynamic atomic force microscopy control codes based on asymptotic nonlinear mechanics”, 2008, submitted.
24.
Zurück zum Zitat N. Krylov, and N. Bogolubov Introduction to Non-linear Mechanics, Princeton University Press, Princeton, 1949. N. Krylov, and N. Bogolubov Introduction to Non-linear Mechanics, Princeton University Press, Princeton, 1949.
25.
Zurück zum Zitat S. Belikov, and Magonov S. Classification of Dynamic Atomic Force Microscopy Control Modes Based on Asymptotic Nonlinear Mechanics, Proceedings of American Control Society, St. Louis, 979–985, 2009. S. Belikov, and Magonov S. Classification of Dynamic Atomic Force Microscopy Control Modes Based on Asymptotic Nonlinear Mechanics, Proceedings of American Control Society, St. Louis, 979–985, 2009.
26.
Zurück zum Zitat T. Fukuma, T. Ichii, K. Kobayashi, H. Yamada, and K. Matsushige “True-molecular resolution imaging by frequency modulation atomic force microscopy in various environments” Appl. Phys. Lett. 1995, 86, 034103–034105.CrossRef T. Fukuma, T. Ichii, K. Kobayashi, H. Yamada, and K. Matsushige “True-molecular resolution imaging by frequency modulation atomic force microscopy in various environments” Appl. Phys. Lett. 1995, 86, 034103–034105.CrossRef
27.
Zurück zum Zitat D. Klinov, and S. Magonov “True molecular resolution in tapping mode atomic force microscopy” Appl. Phys. Lett. 2004, 84, 2697–2699.CrossRef D. Klinov, and S. Magonov “True molecular resolution in tapping mode atomic force microscopy” Appl. Phys. Lett. 2004, 84, 2697–2699.CrossRef
28.
Zurück zum Zitat S. Belikov, and S. Magonov “True molecular-scale imaging in atomic force microscopy:Experiment and modeling” Jpn. J. Appl. Phys. 2006, 45, 2158–2165.CrossRef S. Belikov, and S. Magonov “True molecular-scale imaging in atomic force microscopy:Experiment and modeling” Jpn. J. Appl. Phys. 2006, 45, 2158–2165.CrossRef
29.
Zurück zum Zitat T. Ohta, Y. Sugawara, and S. Morita “Feasibility study on a novel type of computerized tomography on scanning probe microscope” Jpn. J. Appl. Phys. 1996, 35, L1222–L1224.CrossRef T. Ohta, Y. Sugawara, and S. Morita “Feasibility study on a novel type of computerized tomography on scanning probe microscope” Jpn. J. Appl. Phys. 1996, 35, L1222–L1224.CrossRef
30.
Zurück zum Zitat J. M. R. Weaver and D. W. Abraham, “High-resolution atomic force microscopy potentiometry” J. Vac. Sci. Technol. B 1991, 9, 1559–1561.CrossRef J. M. R. Weaver and D. W. Abraham, “High-resolution atomic force microscopy potentiometry” J. Vac. Sci. Technol. B 1991, 9, 1559–1561.CrossRef
31.
Zurück zum Zitat M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe “Kelvin probe force microscopy” Appl. Phys. Lett. 1991, 58, 2921–2923.CrossRef M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe “Kelvin probe force micro­scopy” Appl. Phys. Lett. 1991, 58, 2921–2923.CrossRef
32.
Zurück zum Zitat J. E. Stern, B. D. Terris, H. J. Mamin, and D. Rugar “Deposition and imaging of localized charge on insulator surfaces using a force microscope” Appl. Phys. Lett. 1988, 53, 2717–2719.CrossRef J. E. Stern, B. D. Terris, H. J. Mamin, and D. Rugar “Deposition and imaging of localized charge on insulator surfaces using a force microscope” Appl. Phys. Lett. 1988, 53, 2717–2719.CrossRef
33.
Zurück zum Zitat B. D. Terris, J. E. Stern, D. Rugar, and H. J. Mamin “Localized charge force microscopy” J. Vac. Sci. Technol. A 1990, 8, 374–377.CrossRef B. D. Terris, J. E. Stern, D. Rugar, and H. J. Mamin “Localized charge force microscopy” J. Vac. Sci. Technol. A 1990, 8, 374–377.CrossRef
34.
Zurück zum Zitat C. Schoenenberger, and S. F. Alvarado “Observation of single charge carriers by force microscopy” Phys. Rev. Lett. 1990, 65, 3162–3164.CrossRef C. Schoenenberger, and S. F. Alvarado “Observation of single charge carriers by force microscopy” Phys. Rev. Lett. 1990, 65, 3162–3164.CrossRef
35.
Zurück zum Zitat A. Kikukawa, S. Hosaka, and R. Imura “Silicon pn junction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy” Appl. Phys. Lett. 1995, 66, 3510–3512.CrossRef A. Kikukawa, S. Hosaka, and R. Imura “Silicon pn junction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy” Appl. Phys. Lett. 1995, 66, 3510–3512.CrossRef
36.
Zurück zum Zitat S. Kitamura, and M. Iwatsuki “High-resolution imaging of contact potential difference with ultrahigh vacuum non-contact atomic force microscopy” Appl. Phys. Lett. 1998, 72, 3154–3156.CrossRef S. Kitamura, and M. Iwatsuki “High-resolution imaging of contact potential difference with ultrahigh vacuum non-contact atomic force microscopy” Appl. Phys. Lett. 1998, 72, 3154–3156.CrossRef
37.
Zurück zum Zitat H. Yokoyama, and M. J. Jeffery “Imaging high-frequency dielectric dispersion of surfaces and thin films by heterodyne force-detected scanning Maxwell stress microscopy” Colloids Surf. A 1994, 93, 359–373.CrossRef H. Yokoyama, and M. J. Jeffery “Imaging high-frequency dielectric dispersion of surfaces and thin films by heterodyne force-detected scanning Maxwell stress microscopy” Colloids Surf. A 1994, 93, 359–373.CrossRef
38.
Zurück zum Zitat M. Fujihira “Kelvin probe force microscopy of molecular surfaces” Annu. Rev. Mater. Sci. 1999, 29, 353–380.CrossRef M. Fujihira “Kelvin probe force microscopy of molecular surfaces” Annu. Rev. Mater. Sci. 1999, 29, 353–380.CrossRef
39.
Zurück zum Zitat M. Luna, D. F. Ogletree, and M. Salmeron “A study of the topographic and electric properties of self-assembled islands of alkylsilanes on mica using a combination of non-contact force microscopy techniques” Nanotechnology 2006, 17, S178–S184.CrossRef M. Luna, D. F. Ogletree, and M. Salmeron “A study of the topographic and electric properties of self-assembled islands of alkylsilanes on mica using a combination of non-contact force microscopy techniques” Nanotechnology 2006, 17, S178–S184.CrossRef
40.
Zurück zum Zitat R. Viswanathan, and M. B. Heaney “Direct imaging of the percolation network in a three-dimensional disordered conductor–insulator composite” Phys. Rev. Lett. 1995, 75, 4433–4436.CrossRef R. Viswanathan, and M. B. Heaney “Direct imaging of the percolation network in a three-dimensional disordered conductor–insulator composite” Phys. Rev. Lett. 1995, 75, 4433–4436.CrossRef
41.
Zurück zum Zitat H. Sugimura, Y. Ishida, K. Hayashi, O. Takai, and N. Nakagiri “Potential shielding by the surface water layer in Kelvin probe force microscopy” Appl. Phys. Lett. 2002, 80, 1459–1461.CrossRef H. Sugimura, Y. Ishida, K. Hayashi, O. Takai, and N. Nakagiri “Potential shielding by the surface water layer in Kelvin probe force microscopy” Appl. Phys. Lett. 2002, 80, 1459–1461.CrossRef
42.
Zurück zum Zitat X. Cui, M. Freitag, R. Martel, L. Brus, and P. Avouris “Controlling energy-level alignments at carbon nanotube/Au contacts” Nano Lett. 2003, 3, 783–787.CrossRef X. Cui, M. Freitag, R. Martel, L. Brus, and P. Avouris “Controlling energy-level alignments at carbon nanotube/Au contacts” Nano Lett. 2003, 3, 783–787.CrossRef
43.
Zurück zum Zitat T. Yamanuchi, M. Tabuchi, and A. Nakamura “Size dependence of the work function in InAs quantum dots on GaAs (001) as studies by Kelvin force probe microscopy” Appl. Phys. Lett. 2004, 84, 3834–3836.CrossRef T. Yamanuchi, M. Tabuchi, and A. Nakamura “Size dependence of the work function in InAs quantum dots on GaAs (001) as studies by Kelvin force probe microscopy” Appl. Phys. Lett. 2004, 84, 3834–3836.CrossRef
44.
Zurück zum Zitat L. Buergi, H. Sirringhaus, and R. H. Friend “Noncontact potentiometry of polymer field-effect transistors” Appl. Phys. Lett. 2002, 80, 2913–2916.CrossRef L. Buergi, H. Sirringhaus, and R. H. Friend “Noncontact potentiometry of polymer field-effect transistors” Appl. Phys. Lett. 2002, 80, 2913–2916.CrossRef
45.
Zurück zum Zitat K. P. Puntambekar, P. V. Pesavento, and C. D. Friesbie “Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe microscopy” Appl. Phys. Lett. 2003, 83, 5539–5541.CrossRef K. P. Puntambekar, P. V. Pesavento, and C. D. Friesbie “Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe microscopy” Appl. Phys. Lett. 2003, 83, 5539–5541.CrossRef
46.
Zurück zum Zitat M. Chiesa, L. Buergi, J.-S. Kim, R. Shikler, R. H. Friend, and H. Sirringhaus “Correlation between surface photovoltage and blend morphology in polyfluorene-based photodiodes” Nano Lett. 2005, 5, 559–563.CrossRef M. Chiesa, L. Buergi, J.-S. Kim, R. Shikler, R. H. Friend, and H. Sirringhaus “Correlation between surface photovoltage and blend morphology in polyfluorene-based photodiodes” Nano Lett. 2005, 5, 559–563.CrossRef
47.
Zurück zum Zitat T. Glatzel, H. Hoppe, N. S. Sariciftci, M. C. H. Lux-Steiner, and M. Komiyama “Kelvin probe force microscopy study of conjugated polymer/fullerene organic solar cells” Jpn. J. Appl. Phys. 2005, 44, 5370–5373.CrossRef T. Glatzel, H. Hoppe, N. S. Sariciftci, M. C. H. Lux-Steiner, and M. Komiyama “Kelvin probe force microscopy study of conjugated polymer/fullerene organic solar cells” Jpn. J. Appl. Phys. 2005, 44, 5370–5373.CrossRef
48.
Zurück zum Zitat O. A. Semenikhin, L. Jiang, K. Hashimoto, and A. Fujishima “Kelvin probe force microscopic study of anodically and cathodically doped poly-3-methylthiophene” Synth. Met. 2000, 110, 115–222.CrossRef O. A. Semenikhin, L. Jiang, K. Hashimoto, and A. Fujishima “Kelvin probe force microscopic study of anodically and cathodically doped poly-3-methylthiophene” Synth. Met. 2000, 110, 115–222.CrossRef
49.
Zurück zum Zitat E. Perez-Garcia, J. Abad, A. Urbina, J. Colchero, and E. Palacios-Lidon “Surface potential domains on lamellar P3OT structures” Nanotechnology 2008, 19, 065709.CrossRef E. Perez-Garcia, J. Abad, A. Urbina, J. Colchero, and E. Palacios-Lidon “Surface potential domains on lamellar P3OT structures” Nanotechnology 2008, 19, 065709.CrossRef
50.
Zurück zum Zitat M. Fujihira, and H. Kawate “Scanning surface potential microscope for characterization of Langmuir–Blodgett films” Thin Sold Films 1994, 242, 163–169.CrossRef M. Fujihira, and H. Kawate “Scanning surface potential microscope for characterization of Langmuir–Blodgett films” Thin Sold Films 1994, 242, 163–169.CrossRef
51.
Zurück zum Zitat M. Yasutake, D. Aoki, and M. Fujihira “Surface potential measurements using the Kelvin probe force microscope” Thin Solid Films 1996, 273, 279–283.CrossRef M. Yasutake, D. Aoki, and M. Fujihira “Surface potential measurements using the Kelvin probe force microscope” Thin Solid Films 1996, 273, 279–283.CrossRef
52.
Zurück zum Zitat M. Fujihira, and H. Kawate “Structural study of Langmuir–Blodgett films by scanning surface potential microscopy” J. Vac. Sci. Technol. B 1994, 12, 1604–1608.CrossRef M. Fujihira, and H. Kawate “Structural study of Langmuir–Blodgett films by scanning ­surface potential microscopy” J. Vac. Sci. Technol. B 1994, 12, 1604–1608.CrossRef
53.
Zurück zum Zitat H. Sugimura, K. Hayashi, N. Saito, O. Takai, and N. Nakagiri “Kelvin probe force microscopy images of microstructured organosilane self-assembled layers” Jpn. J. Appl. Phys. 2001, 40, 4373–4377.CrossRef H. Sugimura, K. Hayashi, N. Saito, O. Takai, and N. Nakagiri “Kelvin probe force micro­scopy images of microstructured organosilane self-assembled layers” Jpn. J. Appl. Phys. 2001, 40, 4373–4377.CrossRef
54.
Zurück zum Zitat T. Inoue, and H. Yokoyama “Imaging of surface electrostatic features in phase-separated phospholipid monolayers by scanning Maxwell stress microscopy” J. Vac. Sci. Technol. B 1994, 12, 1569–1571.CrossRef T. Inoue, and H. Yokoyama “Imaging of surface electrostatic features in phase-separated phospholipid monolayers by scanning Maxwell stress microscopy” J. Vac. Sci. Technol. B 1994, 12, 1569–1571.CrossRef
55.
Zurück zum Zitat J. Lu, E. Delamarche, L. Eng, R. Bennewitz, E. Meyer, and H.-J. Guentherodt “Kelvin probe force microscopy on surfaces:Investigation of the surface potential of self-assembled monolayers on Gold” Langmuir 1999, 15, 8184–8188. The following values:k=25N/m, B=3Hz, Q=100, f 0=160kHz, U s=0.5V, z=10nm, and R=20nm were used for the estimate of the minimal detectable surface potential.CrossRef J. Lu, E. Delamarche, L. Eng, R. Bennewitz, E. Meyer, and H.-J. Guentherodt “Kelvin probe force microscopy on surfaces:Investigation of the surface potential of self-assembled monolayers on Gold” Langmuir 1999, 15, 8184–8188. The following values:k=25N/m, B=3Hz, Q=100, f 0=160kHz, U s=0.5V, z=10nm, and R=20nm were used for the estimate of the minimal detectable surface potential.CrossRef
56.
Zurück zum Zitat T. Ichii, T. Fukuma, K. Kobayashi, H. Yamada, and K. Matsushige “Surface potential measurements of phase-separated alkanethiol self-assembled monolayers by non-contact atomic force microscopy” Nanotechnology 2004, 15, S30–S33.CrossRef T. Ichii, T. Fukuma, K. Kobayashi, H. Yamada, and K. Matsushige “Surface potential ­measurements of phase-separated alkanethiol self-assembled monolayers by non-contact atomic force microscopy” Nanotechnology 2004, 15, S30–S33.CrossRef
57.
Zurück zum Zitat E. Palacios-Lidon, J. Abellan, J. Colchero, C. Munuera, and C. Ocal “Quantitative electrostatic force microscopy on heterogeneous nanoscale samples” Appl. Phys. Lett. 2005, 87, 154106–154108.CrossRef E. Palacios-Lidon, J. Abellan, J. Colchero, C. Munuera, and C. Ocal “Quantitative electrostatic force microscopy on heterogeneous nanoscale samples” Appl. Phys. Lett. 2005, 87, 154106–154108.CrossRef
58.
Zurück zum Zitat M. Nakamura, and T. Yamada “Electrostatic force microscopy” in Roadmap 2005 of Scanning Probe Microscopy, (S. Morita, Ed.), Ch. 6, pp. 43–51, Springer, Berlin, 2006. M. Nakamura, and T. Yamada “Electrostatic force microscopy” in Roadmap 2005 of Scanning Probe Microscopy, (S. Morita, Ed.), Ch. 6, pp. 43–51, Springer, Berlin, 2006.
59.
Zurück zum Zitat H. O. Jacobs, P. Leuchtmann, O. J. Homan, and A. Stemmer “Resolution and contrast in Kelvin probe force microscopy” J. Appl. Phys. 1998, 84, 1168–1173.CrossRef H. O. Jacobs, P. Leuchtmann, O. J. Homan, and A. Stemmer “Resolution and contrast in Kelvin probe force microscopy” J. Appl. Phys. 1998, 84, 1168–1173.CrossRef
60.
Zurück zum Zitat S. Kitamura, K. Suzuki, M. Iwatsuki, and C. B. Mooney “Atomic-scale variations in contact potential difference on Au/Si(111) 7×7 surface in ultrahigh vacuum” Appl. Surf. Sci. 2000, 157, 222–227.CrossRef S. Kitamura, K. Suzuki, M. Iwatsuki, and C. B. Mooney “Atomic-scale variations in contact potential difference on Au/Si(111) 7×7 surface in ultrahigh vacuum” Appl. Surf. Sci. 2000, 157, 222–227.CrossRef
61.
Zurück zum Zitat J. Colchero, A. Gil, and A. M. Baro “Resolution enhancement and improved data interpretation in electrostatic force microscopy” Phys. Rev. B 2001, 64, 245403.CrossRef J. Colchero, A. Gil, and A. M. Baro “Resolution enhancement and improved data interpretation in electrostatic force microscopy” Phys. Rev. B 2001, 64, 245403.CrossRef
62.
Zurück zum Zitat U. Zerweck, CH. Loppacher, T. Otto, S. Grafstroem, and L. M. Eng “Accuracy and resolution limits of Kelvin probe force microscopy” Phys. Rev. B 2005, 71, 125424.CrossRef U. Zerweck, CH. Loppacher, T. Otto, S. Grafstroem, and L. M. Eng “Accuracy and resolution limits of Kelvin probe force microscopy” Phys. Rev. B 2005, 71, 125424.CrossRef
63.
Zurück zum Zitat M. Zhao, V. Sharma, H. Wei, R. R. Birge, J. A. Stuart, F. Papadimitrakopoulos and B. D. Huey “Ultrasharp and high aspect ratio carbon nanotube atomic force microscopy probes for enhanced surface potential imaging” Nanotechnology 2008, 19, 235704.CrossRef M. Zhao, V. Sharma, H. Wei, R. R. Birge, J. A. Stuart, F. Papadimitrakopoulos and B. D. Huey “Ultrasharp and high aspect ratio carbon nanotube atomic force microscopy probes for enhanced surface potential imaging” Nanotechnology 2008, 19, 235704.CrossRef
64.
Zurück zum Zitat F. Krok, K. Sajewicz, J. Konior, M. Goryl, P. Piatkowski, and M. Szymonski “Lateral resolution and potential sensitivity in Kelvin probe force microscopy; Towards understanding of the sub-nanometer resolution” Phys. Rev. B 2008, 77, 235427–235429.CrossRef F. Krok, K. Sajewicz, J. Konior, M. Goryl, P. Piatkowski, and M. Szymonski “Lateral resolution and potential sensitivity in Kelvin probe force microscopy; Towards understanding of the sub-nanometer resolution” Phys. Rev. B 2008, 77, 235427–235429.CrossRef
65.
Zurück zum Zitat F. Saurenbach, and B. D. Terris “Imaging of ferroelectric domain walls by force microscopy” Appl. Phys. Lett. 1990, 56, 1703–1705.CrossRef F. Saurenbach, and B. D. Terris “Imaging of ferroelectric domain walls by force microscopy” Appl. Phys. Lett. 1990, 56, 1703–1705.CrossRef
66.
Zurück zum Zitat K. Franke, J. Besold, W. Haessler, and C. Seegebarth “Modification and detection of domains on ferroelectric PZT films by scanning force microscopy” Surf. Sci. Lett. 1994, 302, L283–L288.CrossRef K. Franke, J. Besold, W. Haessler, and C. Seegebarth “Modification and detection of domains on ferroelectric PZT films by scanning force microscopy” Surf. Sci. Lett. 1994, 302, L283–L288.CrossRef
67.
Zurück zum Zitat N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer “Ferroelectric thin films:Review of materials, properties, and applications” J. Appl. Phys. 2006, 100, 051606.CrossRef N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer “Ferroelectric thin films:Review of materials, properties, and applications” J. Appl. Phys. 2006, 100, 051606.CrossRef
68.
Zurück zum Zitat D. Damjanovic “Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics” Rep. Prog. Phys. 1998, 61, 1267–1324.CrossRef D. Damjanovic “Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics” Rep. Prog. Phys. 1998, 61, 1267–1324.CrossRef
69.
Zurück zum Zitat J.F. Nye Physical Properties of Crystals, Oxford:Oxford University Press, 1985. J.F. Nye Physical Properties of Crystals, Oxford:Oxford University Press, 1985.
70.
Zurück zum Zitat A. L. Kholkin, S. V. Kalinin, A. Roelofs, and A. Gruverman, “Review of ferroelectric domain imaging by piezoresponse force microscopy” in Scanning Probe Microscopy, (S. Kalinin, A. Gruverman, Eds.), vol 1, pp. 173–214, Springer, New York, 2007.CrossRef A. L. Kholkin, S. V. Kalinin, A. Roelofs, and A. Gruverman, “Review of ferroelectric domain imaging by piezoresponse force microscopy” in Scanning Probe Microscopy, (S. Kalinin, A. Gruverman, Eds.), vol 1, pp. 173–214, Springer, New York, 2007.CrossRef
71.
Zurück zum Zitat A. Roelofs, T. Schneller, K. Szot, and R. Waser “Piezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity” Appl. Phys. Lett. 2002, 81, 5231–5233.CrossRef A. Roelofs, T. Schneller, K. Szot, and R. Waser “Piezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity” Appl. Phys. Lett. 2002, 81, 5231–5233.CrossRef
72.
Zurück zum Zitat C. Yasuo, H. Sunao, O. Nozomi, T. Kenkou, and H. Yoshiomi, “Realization of 10 Tbit/in2 memory density and sub-nanosecond domain switching time in ferroelectric data storage” App. Phys. Lett. 2005, 87, 232907–232909.CrossRef C. Yasuo, H. Sunao, O. Nozomi, T. Kenkou, and H. Yoshiomi, “Realization of 10 Tbit/in2 memory density and sub-nanosecond domain switching time in ferroelectric data storage” App. Phys. Lett. 2005, 87, 232907–232909.CrossRef
73.
Zurück zum Zitat A. Gruverman, D. Wu, and J. F. Scott, “Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale” Phys. Rev. Lett. 2008, 100, 097601.CrossRef A. Gruverman, D. Wu, and J. F. Scott, “Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale” Phys. Rev. Lett. 2008, 100, 097601.CrossRef
74.
Zurück zum Zitat A. Roelofs, U. Bottger, R. Waser, F. Schlaphof, S. Trogisch, and L. M. Eng, “Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy” Appl. Phys. Lett. 2000, 77, 3444–3446.CrossRef A. Roelofs, U. Bottger, R. Waser, F. Schlaphof, S. Trogisch, and L. M. Eng, “Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy” Appl. Phys. Lett. 2000, 77, 3444–3446.CrossRef
75.
Zurück zum Zitat S. V. Kalinin, B. J. Rodriguez, S. Jesse, J. Shin, A. P. Baddorf, P. Gupta, H. Jain, D. B. Williams, and A. Gruverman, “Vector piezoresponse force microscopy” Microsc. Microanal. 2006, 12, 206–220.CrossRef S. V. Kalinin, B. J. Rodriguez, S. Jesse, J. Shin, A. P. Baddorf, P. Gupta, H. Jain, D. B. Williams, and A. Gruverman, “Vector piezoresponse force microscopy” Microsc. Microanal. 2006, 12, 206–220.CrossRef
76.
Zurück zum Zitat B. J. Rodriguez, S. Jesse, M. Alexe, and S. V. Kalinin “Spatially resolved mapping of polarization switching behavior in nanoscale ferroelectrics” Adv. Mater. 2008, 20, 109.CrossRef B. J. Rodriguez, S. Jesse, M. Alexe, and S. V. Kalinin “Spatially resolved mapping of polarization switching behavior in nanoscale ferroelectrics” Adv. Mater. 2008, 20, 109.CrossRef
77.
Zurück zum Zitat S. Jesse, H. N. Lee, and S. Kalinin, “Quantitative mapping of switching behavior in piezoresponse microscopy” Rev. Sci. Instrum. 2006, 77, 0737001.CrossRef S. Jesse, H. N. Lee, and S. Kalinin, “Quantitative mapping of switching behavior in piezoresponse microscopy” Rev. Sci. Instrum. 2006, 77, 0737001.CrossRef
78.
Zurück zum Zitat S. V. Kalinin, and D. A. Bonnell “Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces” Phys. Rev. B 2002, 65, 125408.CrossRef S. V. Kalinin, and D. A. Bonnell “Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces” Phys. Rev. B 2002, 65, 125408.CrossRef
79.
Zurück zum Zitat S. V. Kalinin, E. Karapetian, and M. Kachanov “Nanoelectromechanics of piezoresponse force microscopy” Phys. Rev. B 2004, 70, 184101.CrossRef S. V. Kalinin, E. Karapetian, and M. Kachanov “Nanoelectromechanics of piezoresponse force microscopy” Phys. Rev. B 2004, 70, 184101.CrossRef
80.
Zurück zum Zitat A. L. Kholkin, V. V. Shvartsman, A. Y. Emelyanov, R. Poyato, M. L. Calzada, and L. Pardo “Stress-induced suppression of piezoelectric properties in PbTiO3:La thin films via scanning force microscopy” Appl. Phys. Lett. 2003, 82, 2127–2129.CrossRef A. L. Kholkin, V. V. Shvartsman, A. Y. Emelyanov, R. Poyato, M. L. Calzada, and L. Pardo “Stress-induced suppression of piezoelectric properties in PbTiO3:La thin films via scanning force microscopy” Appl. Phys. Lett. 2003, 82, 2127–2129.CrossRef
81.
Zurück zum Zitat T. Jungk, A. Hoffmann, and E. Soergel “Challenges for the determination of piezoelectric with piezoresponse force microscopy” Appl. Phys. Lett. 2007, 91, 253511–253513.CrossRef T. Jungk, A. Hoffmann, and E. Soergel “Challenges for the determination of piezoelectric with piezoresponse force microscopy” Appl. Phys. Lett. 2007, 91, 253511–253513.CrossRef
82.
Zurück zum Zitat T. Jungk, A. Hoffmann, and E. Soergel “Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy” Appl. Phys. Lett. 2006, 89, 163507–163509.CrossRef T. Jungk, A. Hoffmann, and E. Soergel “Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy” Appl. Phys. Lett. 2006, 89, 163507–163509.CrossRef
83.
Zurück zum Zitat J. Alexander, and S. Magonov Electric Force Microscopy and Kelvin Force Microscopy Support Note, Agilent Technologies, Chandler, AZ, 2008. J. Alexander, and S. Magonov Electric Force Microscopy and Kelvin Force Microscopy Support Note, Agilent Technologies, Chandler, AZ, 2008.
84.
Zurück zum Zitat B. Mesa, and S. N. Magonov “Novel diamond/sapphire probes for scanning probe microscopy applications” J. Phys. Conf. Ser., 2007, 61, 770–774.CrossRef B. Mesa, and S. N. Magonov “Novel diamond/sapphire probes for scanning probe microscopy applications” J. Phys. Conf. Ser., 2007, 61, 770–774.CrossRef
85.
Zurück zum Zitat S. Sadewasser, and M. Ch. Lux-Steiner “Correct height measurements in the noncontact atomic force microscopy” Phys. Rev. Lett. 2003, 91, 266101.CrossRef S. Sadewasser, and M. Ch. Lux-Steiner “Correct height measurements in the noncontact atomic force microscopy” Phys. Rev. Lett. 2003, 91, 266101.CrossRef
86.
Zurück zum Zitat N. A. Yerina, and S. N. Magonov “Atomic force microscopy in analysis of rubber materials” Rubber Ind. Technol. 2003, 76, 846–859. N. A. Yerina, and S. N. Magonov “Atomic force microscopy in analysis of rubber materials” Rubber Ind. Technol. 2003, 76, 846–859.
87.
Zurück zum Zitat P. Mesquida, and A. Stemmer “Attaching silica nanoparticles from suspension onto surface charge patterns generated by a conductive atomic force microscope tip” Adv. Mater. 2001, 13, 1395–1398.CrossRef P. Mesquida, and A. Stemmer “Attaching silica nanoparticles from suspension onto surface charge patterns generated by a conductive atomic force microscope tip” Adv. Mater. 2001, 13, 1395–1398.CrossRef
88.
Zurück zum Zitat A. Groszek “Selective adsorption at graphite/hydrocarbon interfaces” Proc. Roy. Soc. (Lond.) A 1970, 314, 473–498.CrossRef A. Groszek “Selective adsorption at graphite/hydrocarbon interfaces” Proc. Roy. Soc. (Lond.) A 1970, 314, 473–498.CrossRef
89.
Zurück zum Zitat S. N. Magonov, and N. Yerina “High temperature atomic force microscopy of normal alkane C60H122 films on graphite” Langmuir 2003, 19, 500–504.CrossRef S. N. Magonov, and N. Yerina “High temperature atomic force microscopy of normal alkane C60H122 films on graphite” Langmuir 2003, 19, 500–504.CrossRef
90.
Zurück zum Zitat R. V. Martinez, N. S. Losilla, J. Martinez, Y. Huttel, and R. Garcia “Patterning polymeric structures with 2nm resolution at 3nm half pitch in ambient conditions” Nano Lett. 2007, 7, 1846–1850.CrossRef R. V. Martinez, N. S. Losilla, J. Martinez, Y. Huttel, and R. Garcia “Patterning polymeric structures with 2nm resolution at 3nm half pitch in ambient conditions” Nano Lett. 2007, 7, 1846–1850.CrossRef
91.
Zurück zum Zitat Z. Tang, N. A. Kotov, and M. Giersig “Spontaneous organization of single CdTe nanoparticles into luminescent nanowires” Science 2002, 297, 237–240.CrossRef Z. Tang, N. A. Kotov, and M. Giersig “Spontaneous organization of single CdTe nanoparticles into luminescent nanowires” Science 2002, 297, 237–240.CrossRef
92.
Zurück zum Zitat S. Magonov, J. Alexander, S.-H. Jeoung, and N. Kotov “High-Resolution Imaging of Molecular and Nanoparticles Assemblies with Kelvin Force Microscopy” J. Nanosci. Nanotechnol. 2010, 10, 1–5. S. Magonov, J. Alexander, S.-H. Jeoung, and N. Kotov “High-Resolution Imaging of Molecular and Nanoparticles Assemblies with Kelvin Force Microscopy” J. Nanosci. Nanotechnol. 2010, 10, 1–5.
93.
Zurück zum Zitat J. Alexander, and S. Magonov Advanced Atomic Force Microscopy:Probing Electrostatic Force Interactions Application Note, Agilent Technologies, Chandler, AZ, 2008. J. Alexander, and S. Magonov Advanced Atomic Force Microscopy:Probing Electrostatic Force Interactions Application Note, Agilent Technologies, Chandler, AZ, 2008.
94.
Zurück zum Zitat J. Alexander, S Magonov, and M. Moeller “Topography and surface potential in Kelvin force microscopy of perfluoroalkyl alkanes self-assemblies” J. Vac. Sci. Technol. B 2009, 27, 903–911.CrossRef J. Alexander, S Magonov, and M. Moeller “Topography and surface potential in Kelvin force microscopy of perfluoroalkyl alkanes self-assemblies” J. Vac. Sci. Technol. B 2009, 27, 903–911.CrossRef
95.
Zurück zum Zitat H. B. Michaelson “The work function of the elements and its periodicity” J. Appl. Phys. 1977, 48, 4729–4733.CrossRef H. B. Michaelson “The work function of the elements and its periodicity” J. Appl. Phys. 1977, 48, 4729–4733.CrossRef
96.
Zurück zum Zitat The SiAuPt test structure was kindly provided by Prof. Monica Cota (University of Campinas, Campinas, Brazil). The SiAuPt test structure was kindly provided by Prof. Monica Cota (University of Campinas, Campinas, Brazil).
97.
Zurück zum Zitat Y. Rosenwaks, R. Shikler, Th. Glatzel, and S. Sadewasser “Kelvin probe force microscopy of semiconductor surface defects” Phys. Rev. B 2004, 70, 085320–085327.CrossRef Y. Rosenwaks, R. Shikler, Th. Glatzel, and S. Sadewasser “Kelvin probe force microscopy of semiconductor surface defects” Phys. Rev. B 2004, 70, 085320–085327.CrossRef
98.
Zurück zum Zitat B. Laegel, M. D. Ayala, and R. Schlaf “Kelvin probe force microscopy on corona charged oxidized semiconductor surfaces” Appl. Phys. Lett. 2004, 85, 4801–4803.CrossRef B. Laegel, M. D. Ayala, and R. Schlaf “Kelvin probe force microscopy on corona charged oxidized semiconductor surfaces” Appl. Phys. Lett. 2004, 85, 4801–4803.CrossRef
99.
Zurück zum Zitat A. K. Henning, T. Hochwitz, J. Slinkman, J. Never, S. Hoffmann, Ph. Kaszuba, and C. Daghlian “Two-dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy” J. Appl. Phys. 1995, 77, 1888–1896.CrossRef A. K. Henning, T. Hochwitz, J. Slinkman, J. Never, S. Hoffmann, Ph. Kaszuba, and C. Daghlian “Two-dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy” J. Appl. Phys. 1995, 77, 1888–1896.CrossRef
100.
Zurück zum Zitat A. Kikukawa, S. Hosaka, and R. Imura “Silicon pn junction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy” Appl. Phys. Lett. 1995, 66, 3510–3512.CrossRef A. Kikukawa, S. Hosaka, and R. Imura “Silicon pn junction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy” Appl. Phys. Lett. 1995, 66, 3510–3512.CrossRef
101.
Zurück zum Zitat T. Matsukawa, S. Kanemaru, M. Masahara, M. Nagao, H. Tanoue, and J. Itoh “Doping diagnosis by evaluation of the surface Fermi level using scanning Maxwell-stress microscopy” Appl. Phys. Lett. 2003, 82, 2166–2168.CrossRef T. Matsukawa, S. Kanemaru, M. Masahara, M. Nagao, H. Tanoue, and J. Itoh “Doping diagnosis by evaluation of the surface Fermi level using scanning Maxwell-stress microscopy” Appl. Phys. Lett. 2003, 82, 2166–2168.CrossRef
102.
Zurück zum Zitat W. Han Scanning Microwave Microscopy Application Note, Agilent Technologies, Chandler, AZ, 2008. W. Han Scanning Microwave Microscopy Application Note, Agilent Technologies, Chandler, AZ, 2008.
103.
Zurück zum Zitat J. F. Rabolt, T. P. Russell, and R. J. Twieg “Structural studies of semifluorinated n-alkanes. 1. Synthesis and characterization of F(CF2) n (CH2) m H in the solid state” Macromolecules 1984, 17, 2786–2794.CrossRef J. F. Rabolt, T. P. Russell, and R. J. Twieg “Structural studies of semifluorinated n-alkanes. 1. Synthesis and characterization of F(CF2) n (CH2) m H in the solid state” Macromolecules 1984, 17, 2786–2794.CrossRef
104.
Zurück zum Zitat T. P. Russell, J. PF. Rabolt, R. J. Twieg, R. L. Siemens, and B. L. Farmer “Structural characterization of semifluorinated normal-alkanes. 2. Solid–solid transition behavior” Macromolecules 1986, 19, 1135–1143.CrossRef T. P. Russell, J. PF. Rabolt, R. J. Twieg, R. L. Siemens, and B. L. Farmer “Structural characterization of semifluorinated normal-alkanes. 2. Solid–solid transition behavior” Macromolecules 1986, 19, 1135–1143.CrossRef
105.
Zurück zum Zitat M. Maaloum, P. Muller, and M. P. Krafft “Monodisperse surface micelles of nonpolar amphiphiles in Langmuir monolayers” Angew. Chem. Int. Ed. 2002, 114, 4531–4534. M. Maaloum, P. Muller, and M. P. Krafft “Monodisperse surface micelles of nonpolar amphiphiles in Langmuir monolayers” Angew. Chem. Int. Ed. 2002, 114, 4531–4534.
106.
Zurück zum Zitat A. Mourran, B. Tartsch, M. Gallyamov, S. Magonov, D. Lambreva, B. I. Ostrovskii, I. P. Dolbnya, W. H. de Jeu, and M. Moeller “Self-assembly of the perfluoroalkyl-alkane F14H20 in ultrathin films” Langmuir 2005, 21, 2308–2316.CrossRef A. Mourran, B. Tartsch, M. Gallyamov, S. Magonov, D. Lambreva, B. I. Ostrovskii, I. P. Dolbnya, W. H. de Jeu, and M. Moeller “Self-assembly of the perfluoroalkyl-alkane F14H20 in ultrathin films” Langmuir 2005, 21, 2308–2316.CrossRef
107.
Zurück zum Zitat T. Kato, M. Kameyama, M. Eahara, and K. Iimura “Monodisperse two-dimensional nanometer size clusters of partially fluorinated long-chain acids” Langmuir 1998, 14, 1786–1798.CrossRef T. Kato, M. Kameyama, M. Eahara, and K. Iimura “Monodisperse two-dimensional nanometer size clusters of partially fluorinated long-chain acids” Langmuir 1998, 14, 1786–1798.CrossRef
108.
Zurück zum Zitat Y. Ren, K. Iimura, A. Ogawa, and T. Kato “Surface micelles of CF3(CF2)7(CH2)10COOH on aqueous La3+ subphase investigated by atomic force microscopy and infrared spectroscopy” J. Phys. Chem. B 2001, 105, 4305–4312.CrossRef Y. Ren, K. Iimura, A. Ogawa, and T. Kato “Surface micelles of CF3(CF2)7(CH2)10COOH on aqueous La3+ subphase investigated by atomic force microscopy and infrared spectroscopy” J. Phys. Chem. B 2001, 105, 4305–4312.CrossRef
109.
Zurück zum Zitat A. El Abed, E. Pouzet, M-C. Faure, and M. Saniere “Air–water interface-induced smectic bilayer” Phys. Rev. E 2000, 62, R5895–R5898.CrossRef A. El Abed, E. Pouzet, M-C. Faure, and M. Saniere “Air–water interface-induced smectic bilayer” Phys. Rev. E 2000, 62, R5895–R5898.CrossRef
110.
Zurück zum Zitat A. El Abed, M-C. Faure, E. Pouzet, and O. Abilon “Experimental evidence for an original two-dimensional phase structure:An antiparallel semifluorinated monolayer at the air-water interface” Phys. Rev. E 2002, 5, 051603–051604.CrossRef A. El Abed, M-C. Faure, E. Pouzet, and O. Abilon “Experimental evidence for an original two-dimensional phase structure:An antiparallel semifluorinated monolayer at the air-water interface” Phys. Rev. E 2002, 5, 051603–051604.CrossRef
111.
Zurück zum Zitat D. R. Lide, Ed. CRC Handbook of Chemistry and Physics, 81st ed., CRC Press, Boca Raton, FL, 2000. D. R. Lide, Ed. CRC Handbook of Chemistry and Physics, 81st ed., CRC Press, Boca Raton, FL, 2000.
112.
Zurück zum Zitat N. Nonnenmacher, and H. K. Wickramasinghe “Optical absorption spectroscopy by scanning force microscopy” Ultramicroscopy 1992, 42–44, 351–354.CrossRef N. Nonnenmacher, and H. K. Wickramasinghe “Optical absorption spectroscopy by scanning force microscopy” Ultramicroscopy 1992, 42–44, 351–354.CrossRef
113.
Zurück zum Zitat R. W. Stark, N. Naujoks, and A. Stemmer “Multifrequency electrostatic force microscopy in the repulsive regime” Nanotechnology 2007, 18, 065502–065507.CrossRef R. W. Stark, N. Naujoks, and A. Stemmer “Multifrequency electrostatic force microscopy in the repulsive regime” Nanotechnology 2007, 18, 065502–065507.CrossRef
Metadaten
Titel
Advancing Characterization of Materials with Atomic Force Microscopy-Based Electric Techniques
verfasst von
Sergei Magonov
John Alexander
Shijie Wu
Copyright-Jahr
2011
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-7167-8_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.