Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

10.10.2020 | Regular Paper | Ausgabe 1/2021

Knowledge and Information Systems 1/2021

Adversarially regularized medication recommendation model with multi-hop memory network

Zeitschrift:
Knowledge and Information Systems > Ausgabe 1/2021
Autoren:
Yanda Wang, Weitong Chen, Dechang Pi, Lin Yue
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Medication recommendation is attracting enormous attention due to its promise in effectively prescribing medicines and improving the survival rate of patients. Among all challenges, drug–drug interactions (DDI) related to undesired duplication, antagonism, or alternation between drugs could lead to fatal side effects. Previous researches usually provide models with DDI knowledge to achieve DDI reduction. However, the mixed use of patients with different DDI rates places stringent requirements on the generalization performance of models. In pursuit of a more effective method, we propose the adversarially regularized model for medication recommendation (ARMR). Specifically, ARMR firstly models temporal information from medical records to obtain patient representations and builds a key-value memory network based on information from historical admissions. Then, ARMR carries out multi-hop reading on the memory network to recommend medications. Meanwhile, ARMR uses a GAN model to adversarially regulate the distribution of patient representations by matching the distribution to a desired Gaussian distribution to achieve DDI reduction. Comparative evaluations between ARMR and baselines show that ARMR outperforms all baselines in terms of medication recommendation, achieving DDI reduction regardless of numbers of DDI types being considered.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2021

Knowledge and Information Systems 1/2021 Zur Ausgabe

Premium Partner