Skip to main content
Erschienen in: Autonomous Robots 6/2022

21.06.2022 | Original Research

AEB-RRT*: an adaptive extension bidirectional RRT* algorithm

verfasst von: Xuewu Wang, Jianbin Wei, Xin Zhou, Zelong Xia, Xingsheng Gu

Erschienen in: Autonomous Robots | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to the probabilistic completeness and asymptotic optimality, the RRT* algorithm can find sub-optimal solutions and solve path planning problems effectively compared with other strategies. The B-RRT* algorithm introduces the bidirectional search to obtain faster convergence and shorter paths. To solve the problems of path planning in complex environments with concavities, convexities, narrow channels, mazes and multiple obstacles, an adaptive extension bidirectional RRT* (AEB-RRT*) algorithm is proposed. The AEB-RRT* algorithm simultaneously extends from both the starting point and the ending point, and adaptively adjusts the sampling probability and different expansion methods according to the number of collision detection failures. After acquiring a feasible path, it is then post-processed by interpolation and the principle of triangular inequality to obtain a shorter collision-free path. And the Manhattan distance replaces the Euclidean distance to calculate the distances between nodes in order to achieve higher computational efficiency. The experimental results show that the AEB-RRT* algorithm outperforms other path planning algorithms in stronger search ability, obtaining near-optimal or best paths with high efficiency and better robustness. Furthermore, it is successfully applied to solve the 6-DOF arc welding robot path planning problem.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Baykal, C., Bowen, C., & Alterovitz, R. (2019). Asymptotically optimal kinematic design of robots using motion planning[J]. Autonomous Robots, 43(2), 345–357.CrossRef Baykal, C., Bowen, C., & Alterovitz, R. (2019). Asymptotically optimal kinematic design of robots using motion planning[J]. Autonomous Robots, 43(2), 345–357.CrossRef
Zurück zum Zitat Bergen, G. (1997). Efficient collision detection of complex deformable models using AABB trees[J]. Journal of Graphics Tools, 2(4), 1–13.MATHCrossRef Bergen, G. (1997). Efficient collision detection of complex deformable models using AABB trees[J]. Journal of Graphics Tools, 2(4), 1–13.MATHCrossRef
Zurück zum Zitat Bohlin, R., Kavraki, L. E. (2000). Path planning using lazy PRM[C]//Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). IEEE, 1: 521–528. Bohlin, R., Kavraki, L. E. (2000). Path planning using lazy PRM[C]//Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). IEEE, 1: 521–528.
Zurück zum Zitat Cao, X. M., Zou, X. J., Jia, C. Y., et al. (2019). RRT-based path planning for an intelligent litchi-picking manipulator[J]. Computers and Electronics in Agriculture, 156, 105–118.CrossRef Cao, X. M., Zou, X. J., Jia, C. Y., et al. (2019). RRT-based path planning for an intelligent litchi-picking manipulator[J]. Computers and Electronics in Agriculture, 156, 105–118.CrossRef
Zurück zum Zitat Chaari, I., Koubâa, A., Trigui, S., et al. (2014). SmartPATH: An efficient hybrid ACO-GA algorithm for solving the global path planning problem of mobile robots[J]. International Journal of Advanced Robotic Systems, 11(7), 399–412.CrossRef Chaari, I., Koubâa, A., Trigui, S., et al. (2014). SmartPATH: An efficient hybrid ACO-GA algorithm for solving the global path planning problem of mobile robots[J]. International Journal of Advanced Robotic Systems, 11(7), 399–412.CrossRef
Zurück zum Zitat Chao, N., Liu, Y. K., Xia, H., et al. (2018). Grid-based RRT* for minimum dose walking path-planning in complex radioactive environments[J]. Annals of Nuclear Energy, 115, 73–82.CrossRef Chao, N., Liu, Y. K., Xia, H., et al. (2018). Grid-based RRT* for minimum dose walking path-planning in complex radioactive environments[J]. Annals of Nuclear Energy, 115, 73–82.CrossRef
Zurück zum Zitat Chen, L., Shan, Y. X., Tian, W., et al. (2018). A fast and efficient double-tree RRT*-like sampling-based planner applying on mobile robotic systems[J]. IEEE/ASME Transactions on Mechatronics, 23(6), 2568–2578.CrossRef Chen, L., Shan, Y. X., Tian, W., et al. (2018). A fast and efficient double-tree RRT*-like sampling-based planner applying on mobile robotic systems[J]. IEEE/ASME Transactions on Mechatronics, 23(6), 2568–2578.CrossRef
Zurück zum Zitat Chen, X., Kong, Y. Y., Fang, X., et al. (2013). A fast two-stage ACO algorithm for robotic path planning[J]. Neural Computing and Applications, 22(2), 313–319.CrossRef Chen, X., Kong, Y. Y., Fang, X., et al. (2013). A fast two-stage ACO algorithm for robotic path planning[J]. Neural Computing and Applications, 22(2), 313–319.CrossRef
Zurück zum Zitat Chen, Y., He, Z., & Li, S. L. (2019). Horizon-based lazy optimal RRT for fast, efficient re-planning in dynamic environment[J]. Autonomous Robots, 43(8), 2271–2292.CrossRef Chen, Y., He, Z., & Li, S. L. (2019). Horizon-based lazy optimal RRT for fast, efficient re-planning in dynamic environment[J]. Autonomous Robots, 43(8), 2271–2292.CrossRef
Zurück zum Zitat Chend, S. J., & Fend, Y. P. (2015). Fast collision detection algorithm of cylinders based on generatrices[J]. Journal of Jilin University (science Edition), 2, 291–296. Chend, S. J., & Fend, Y. P. (2015). Fast collision detection algorithm of cylinders based on generatrices[J]. Journal of Jilin University (science Edition), 2, 291–296.
Zurück zum Zitat Dong, Y., Camci, E., & Kayacan, E. (2018). Faster RRT-based non-holonomic path planning in 2D building environments using skeleton-constrained path biasing[J]. Journal of Intelligent & Robotic Systems, 89(3–4), 387–401.CrossRef Dong, Y., Camci, E., & Kayacan, E. (2018). Faster RRT-based non-holonomic path planning in 2D building environments using skeleton-constrained path biasing[J]. Journal of Intelligent & Robotic Systems, 89(3–4), 387–401.CrossRef
Zurück zum Zitat Du, M. B., Mei, T., Chen, J. J., et al. (2015). RRT-based motion planning algorithm for intelligent vehicle in complex environments [J]. Robot, 37(4), 443–450. Du, M. B., Mei, T., Chen, J. J., et al. (2015). RRT-based motion planning algorithm for intelligent vehicle in complex environments [J]. Robot, 37(4), 443–450.
Zurück zum Zitat Gammell, J. D., Srinivasa, S. S., & Barfoot, T. D. (2014). Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2997–3004. Gammell, J. D., Srinivasa, S. S., & Barfoot, T. D. (2014). Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2997–3004.
Zurück zum Zitat Geng, N., Gong, D. W., & Zhang, Y. (2014). PSO-based robot path planning for multi-survivor rescue in limited survival time[J]. Mathematical Problems in Engineering, 2014, 1–10. Geng, N., Gong, D. W., & Zhang, Y. (2014). PSO-based robot path planning for multi-survivor rescue in limited survival time[J]. Mathematical Problems in Engineering, 2014, 1–10.
Zurück zum Zitat Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.CrossRef Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.CrossRef
Zurück zum Zitat Jeong, I. B., Lee, S. J., & Kim, J. H. (2019). Quick-RRT*: Triangular inequality-based implementation of RRT* with improved initial solution and convergence rate[J]. Expert Systems with Applications, 123, 82–90.CrossRef Jeong, I. B., Lee, S. J., & Kim, J. H. (2019). Quick-RRT*: Triangular inequality-based implementation of RRT* with improved initial solution and convergence rate[J]. Expert Systems with Applications, 123, 82–90.CrossRef
Zurück zum Zitat Jordan, M., Perez, A. (2013). Optimal bidirectional rapidly-exploring random trees[R]. Technical Report MIT-CSAIL-TR-2013–021, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA. Jordan, M., Perez, A. (2013). Optimal bidirectional rapidly-exploring random trees[R]. Technical Report MIT-CSAIL-TR-2013–021, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
Zurück zum Zitat Kabutan, R., & Nishida, T. (2018). Motion planning by T-RRT with potential function for vertical articulated robots[J]. Electrical Engineering in Japan, 204(2), 34–43.CrossRef Kabutan, R., & Nishida, T. (2018). Motion planning by T-RRT with potential function for vertical articulated robots[J]. Electrical Engineering in Japan, 204(2), 34–43.CrossRef
Zurück zum Zitat Karaman, S., Frazzoli, E. (2010). Incremental sampling-based algorithms for optimal motion planning[C]// Proceedings of Robotics: Science and Systems VI. The MIT Press, 34–41. Karaman, S., Frazzoli, E. (2010). Incremental sampling-based algorithms for optimal motion planning[C]// Proceedings of Robotics: Science and Systems VI. The MIT Press, 34–41.
Zurück zum Zitat Kavraki, L. E., Svestka, P., Latombe, J. C., et al. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Transactions on Robotics and Automation, 12(4), 566–580.CrossRef Kavraki, L. E., Svestka, P., Latombe, J. C., et al. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Transactions on Robotics and Automation, 12(4), 566–580.CrossRef
Zurück zum Zitat Khatib, O. (1985). Real-time obstacle avoidance for manipulators and mobile robots[C]//Proceedings. 1985 IEEE International Conference on Robotics and Automation. IEEE, 2: 500–505. Khatib, O. (1985). Real-time obstacle avoidance for manipulators and mobile robots[C]//Proceedings. 1985 IEEE International Conference on Robotics and Automation. IEEE, 2: 500–505.
Zurück zum Zitat Kim, M. C., & Song, J. B. (2018). Informed RRT* with improved converging rate by adopting wrapping procedure[J]. Intelligent Service Robotics, 11(1), 53–60.CrossRef Kim, M. C., & Song, J. B. (2018). Informed RRT* with improved converging rate by adopting wrapping procedure[J]. Intelligent Service Robotics, 11(1), 53–60.CrossRef
Zurück zum Zitat Kuffner, J. J., LaValle, S. M. (2000). RRT-connect: An efficient approach to single-query path planning[C]//Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). IEEE, 2: 995–1001. Kuffner, J. J., LaValle, S. M. (2000). RRT-connect: An efficient approach to single-query path planning[C]//Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). IEEE, 2: 995–1001.
Zurück zum Zitat LaValle, S. M. (1998). Rapidly-exploring random trees: A new tool forpath planning [R]. Technical Report TR-98–11, Computer Science Department, Iowa State University, Ames, IA, USA. LaValle, S. M. (1998). Rapidly-exploring random trees: A new tool forpath planning [R]. Technical Report TR-98–11, Computer Science Department, Iowa State University, Ames, IA, USA.
Zurück zum Zitat Li, Y., Cui, R. X., Li, Z. J., et al. (2018). Neural network approximation based near-optimal motion planning with kinodynamic constraints using RRT[J]. IEEE Transactions on Industrial Electronics, 65(11), 8718–8729.CrossRef Li, Y., Cui, R. X., Li, Z. J., et al. (2018). Neural network approximation based near-optimal motion planning with kinodynamic constraints using RRT[J]. IEEE Transactions on Industrial Electronics, 65(11), 8718–8729.CrossRef
Zurück zum Zitat Lozano-Pérez, T., Wesley, M. A., & Fritsch, F. N. (1979). An algorithm for planning collision-free paths among polyhedral obstacles[J]. Communications of the Association for Computing Machinery, 22(10), 560–570.CrossRef Lozano-Pérez, T., Wesley, M. A., & Fritsch, F. N. (1979). An algorithm for planning collision-free paths among polyhedral obstacles[J]. Communications of the Association for Computing Machinery, 22(10), 560–570.CrossRef
Zurück zum Zitat Nasir, J., Islam, F., Malik, U., et al. (2013). RRT*-SMART: A rapid convergence implementation of RRT*[J]. International Journal of Advanced Robotic Systems, 10(7), 1651–1656.CrossRef Nasir, J., Islam, F., Malik, U., et al. (2013). RRT*-SMART: A rapid convergence implementation of RRT*[J]. International Journal of Advanced Robotic Systems, 10(7), 1651–1656.CrossRef
Zurück zum Zitat Noreen, I., Khan, A., Ryu, H., et al. (2018). Optimal path planning in cluttered environment using RRT*-AB[J]. Intelligent Service Robotics, 11(1), 41–52.CrossRef Noreen, I., Khan, A., Ryu, H., et al. (2018). Optimal path planning in cluttered environment using RRT*-AB[J]. Intelligent Service Robotics, 11(1), 41–52.CrossRef
Zurück zum Zitat Patle, B. K., Babu, L. G., Pandey, A., et al. (2019). A review: On path planning strategies for navigation of mobile robot[J]. Defence Technology, 15(4), 582–606.CrossRef Patle, B. K., Babu, L. G., Pandey, A., et al. (2019). A review: On path planning strategies for navigation of mobile robot[J]. Defence Technology, 15(4), 582–606.CrossRef
Zurück zum Zitat Qureshi, A. H., & Ayaz, Y. (2015). Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments[J]. Robotics and Autonomous Systems, 68, 1–11.CrossRef Qureshi, A. H., & Ayaz, Y. (2015). Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments[J]. Robotics and Autonomous Systems, 68, 1–11.CrossRef
Zurück zum Zitat Ryu, H., & Park, Y. (2019). Improved Informed RRT* using grid map skeletonization for mobile robot path planning[J]. International Journal of Precision Engineering and Manufacturing, 20(11), 2033–2039.CrossRef Ryu, H., & Park, Y. (2019). Improved Informed RRT* using grid map skeletonization for mobile robot path planning[J]. International Journal of Precision Engineering and Manufacturing, 20(11), 2033–2039.CrossRef
Zurück zum Zitat Sintov, A., Borum, A., & Bretl, T. (2018). Motion planning of fully actuated closed kinematic chains with revolute joints: A comparative analysis[J]. IEEE Robotics and Automation Letters, 3(4), 2886–2893.CrossRef Sintov, A., Borum, A., & Bretl, T. (2018). Motion planning of fully actuated closed kinematic chains with revolute joints: A comparative analysis[J]. IEEE Robotics and Automation Letters, 3(4), 2886–2893.CrossRef
Zurück zum Zitat Taheri, E., Ferdowsi, M. H., & Danesh, M. (2018). Fuzzy greedy RRT path planning algorithm in a complex configuration space[J]. International Journal of Control, Automation and Systems, 16(6), 3026–3035.CrossRef Taheri, E., Ferdowsi, M. H., & Danesh, M. (2018). Fuzzy greedy RRT path planning algorithm in a complex configuration space[J]. International Journal of Control, Automation and Systems, 16(6), 3026–3035.CrossRef
Zurück zum Zitat Tahir, Z., Qureshi, A. H., Ayaz, Y., et al. (2018). Potentially guided bidirectionalized RRT* for fast optimal path planning in cluttered environments[J]. Robotics and Autonomous Systems, 108, 13–27.CrossRef Tahir, Z., Qureshi, A. H., Ayaz, Y., et al. (2018). Potentially guided bidirectionalized RRT* for fast optimal path planning in cluttered environments[J]. Robotics and Autonomous Systems, 108, 13–27.CrossRef
Zurück zum Zitat Vatcha, R., & Xiao, J. (2014). Detection of robustly collision-free trajectories in unpredictable environments in real-time[J]. Autonomous Robots, 37(1), 81–96.CrossRef Vatcha, R., & Xiao, J. (2014). Detection of robustly collision-free trajectories in unpredictable environments in real-time[J]. Autonomous Robots, 37(1), 81–96.CrossRef
Zurück zum Zitat Wang, X. Y., Li, X. J., Guan, Y., et al. (2019). Bidirectional potential guided RRT* for motion planning[J]. IEEE Access, 7, 95034–95045. Wang, X. Y., Li, X. J., Guan, Y., et al. (2019). Bidirectional potential guided RRT* for motion planning[J]. IEEE Access, 7, 95034–95045.
Zurück zum Zitat Wang, X. W., Shi, Y. P., Ding, D. Y., et al. (2016). Double global optimum genetic algorithm–particle swarm optimization-based welding robot path planning[J]. Engineering Optimization, 48(2), 299–316.MathSciNetCrossRef Wang, X. W., Shi, Y. P., Ding, D. Y., et al. (2016). Double global optimum genetic algorithm–particle swarm optimization-based welding robot path planning[J]. Engineering Optimization, 48(2), 299–316.MathSciNetCrossRef
Zurück zum Zitat Wang, X. W., Tang, B., Yan, Y. X., et al. (2018). Time-optimal path planning for dual-welding robots based on intelligent optimization strategy[M]//Transactions on Intelligent Welding Manufacturing (pp. 47–59). Springer. Wang, X. W., Tang, B., Yan, Y. X., et al. (2018). Time-optimal path planning for dual-welding robots based on intelligent optimization strategy[M]//Transactions on Intelligent Welding Manufacturing (pp. 47–59). Springer.
Zurück zum Zitat Wang, X. W., Zhou, X., Xia, Z. L., et al. (2021). A survey of welding robot intelligent path optimization[J]. Journal of Manufacturing Processes 63, 14–23.CrossRef Wang, X. W., Zhou, X., Xia, Z. L., et al. (2021). A survey of welding robot intelligent path optimization[J]. Journal of Manufacturing Processes 63, 14–23.CrossRef
Zurück zum Zitat Wang, Z. P., Li, G. B., Jiang, H. J., et al. (2018). Collision-free navigation of autonomous vehicles using convex quadratic programming-based model predictive control[J]. IEEE/ASME Transactions on Mechatronics, 23(3), 1103–1113.CrossRef Wang, Z. P., Li, G. B., Jiang, H. J., et al. (2018). Collision-free navigation of autonomous vehicles using convex quadratic programming-based model predictive control[J]. IEEE/ASME Transactions on Mechatronics, 23(3), 1103–1113.CrossRef
Zurück zum Zitat Wei, K., & Ren, B. (2018). A method on dynamic path planning for robotic manipulator autonomous obstacle avoidance based on an improved RRT algorithm[J]. Sensors, 18(2), 571.CrossRef Wei, K., & Ren, B. (2018). A method on dynamic path planning for robotic manipulator autonomous obstacle avoidance based on an improved RRT algorithm[J]. Sensors, 18(2), 571.CrossRef
Zurück zum Zitat Willms, A. R., & Yang, S. X. (2008). Real-time robot path planning via a distance-propagating dynamic system with obstacle clearance[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (cybernetics), 38(3), 884–893.CrossRef Willms, A. R., & Yang, S. X. (2008). Real-time robot path planning via a distance-propagating dynamic system with obstacle clearance[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (cybernetics), 38(3), 884–893.CrossRef
Zurück zum Zitat Zhang, Z., Wu, D. F., Gu, J. D., et al. (2019). A path-planning strategy for unmanned surface vehicles based on an adaptive hybrid dynamic stepsize and target attractive force-RRT Algorithm[J]. Journal of Marine Science and Engineering, 7(5), 132.CrossRef Zhang, Z., Wu, D. F., Gu, J. D., et al. (2019). A path-planning strategy for unmanned surface vehicles based on an adaptive hybrid dynamic stepsize and target attractive force-RRT Algorithm[J]. Journal of Marine Science and Engineering, 7(5), 132.CrossRef
Metadaten
Titel
AEB-RRT*: an adaptive extension bidirectional RRT* algorithm
verfasst von
Xuewu Wang
Jianbin Wei
Xin Zhou
Zelong Xia
Xingsheng Gu
Publikationsdatum
21.06.2022
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 6/2022
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-022-10044-x

Weitere Artikel der Ausgabe 6/2022

Autonomous Robots 6/2022 Zur Ausgabe

Neuer Inhalt