Skip to main content
Erschienen in: Cellulose 2/2022

22.01.2022 | Original Research

Aerogel nanoarchitectonics based on cellulose nanocrystals and nanofibers from eucalyptus pulp: preparation and comparative study

verfasst von: Wenkai Zhu, Yang Zhang, Xiaoyu Wang, Yan Wu, Minsu Han, Jungmok You, Chong Jia, Jeonghun Kim

Erschienen in: Cellulose | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanocellulose-based materials have attracted significant attention because of their attractive advantages. Particularly, aerogel, a porous nanocellulose material, have been used in diverse applications owing to their unique properties. In this study, short rod-like cellulose nanocrystals (CNCs) and long filament-like cellulose nanofibers (CNFs) were isolated from a eucalyptus pulp source using acidolysis and oxidation/mechanical methods, respectively. Subsequently, two different aerogels were prepared from the CNCs and CNFs using the sol–gel method and their properties were compared. The morphology, chemical structure, chemical composition, shrinkage rate, internal structure, thermal degradation, biophysical properties, and mechanical properties of the as-prepared aerogels were compared. Furthermore, the shrinkage of the CNC and CNF aerogels was effectively controlled using a supercritical CO2 drying process. Additionally, three decomposition regions were observed in the thermogravimetric analysis curves of the aerogels; however, the CNF aerogels exhibited enhanced thermal stability than the CNC aerogels. Further, the CNC and CNF aerogels exhibited a mesoporous structure, and the compressive strength of the CNC and CNF aerogels under 85% strain was 269.5 and 299.5 kPa, respectively. This study provides fundamental knowledge on the fabrication of CNCs, CNFs, and corresponding aerogels from lignocellulosic biomass, and their characteristics.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ahankari S, Paliwal P, Subhedar A, Kargarzadeh H (2021) Recent developments in nanocellulose-based aerogels in thermal applications: a review. ACS Nano 15:3849–3874PubMedCrossRef Ahankari S, Paliwal P, Subhedar A, Kargarzadeh H (2021) Recent developments in nanocellulose-based aerogels in thermal applications: a review. ACS Nano 15:3849–3874PubMedCrossRef
Zurück zum Zitat Aminah B, Kose R (2019) Properties of cellulose nanofibers prepared from recycled pulp fiber using the aqueous counter collision method. J Fiber Sci Technol 75:140–144CrossRef Aminah B, Kose R (2019) Properties of cellulose nanofibers prepared from recycled pulp fiber using the aqueous counter collision method. J Fiber Sci Technol 75:140–144CrossRef
Zurück zum Zitat Budtova T (2019) Cellulose II aerogels: a review. Cellulose 26:81–121CrossRef Budtova T (2019) Cellulose II aerogels: a review. Cellulose 26:81–121CrossRef
Zurück zum Zitat Chen WS, Li Q, Wang YC, Yi X, Zeng J, Yu HP et al (2014) Comparative study of aerogels obtained from differently prepared nanocellulose fibers. Chemsuschem 7:154–161PubMedCrossRef Chen WS, Li Q, Wang YC, Yi X, Zeng J, Yu HP et al (2014) Comparative study of aerogels obtained from differently prepared nanocellulose fibers. Chemsuschem 7:154–161PubMedCrossRef
Zurück zum Zitat Chen ZJ, Gao H, Li W, Li SJ, Liu SX, Li J (2020) Research progress of biomass-based optical materials. J for Eng 5:1–12 Chen ZJ, Gao H, Li W, Li SJ, Liu SX, Li J (2020) Research progress of biomass-based optical materials. J for Eng 5:1–12
Zurück zum Zitat Dai L, Long Z, Chen J, An XY, Cheng D, Khan A et al (2017) Robust guar gum/cellulose nanofibrils multilayer films with good barrier properties. ACS Appl Mater Interfaces 9:5477–5485PubMedCrossRef Dai L, Long Z, Chen J, An XY, Cheng D, Khan A et al (2017) Robust guar gum/cellulose nanofibrils multilayer films with good barrier properties. ACS Appl Mater Interfaces 9:5477–5485PubMedCrossRef
Zurück zum Zitat De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631CrossRef De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631CrossRef
Zurück zum Zitat Dong H, Ding QJ, Jiang YF, Li X, Han WJ (2021) Pickering emulsions stabilized by spherical cellulose nanocrystals. Carbohydr Polym 265:118101PubMedCrossRef Dong H, Ding QJ, Jiang YF, Li X, Han WJ (2021) Pickering emulsions stabilized by spherical cellulose nanocrystals. Carbohydr Polym 265:118101PubMedCrossRef
Zurück zum Zitat Du HS, Liu WM, Zhang ML, Si CL, Zhang XY, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr Polym 209:130–144PubMedCrossRef Du HS, Liu WM, Zhang ML, Si CL, Zhang XY, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr Polym 209:130–144PubMedCrossRef
Zurück zum Zitat French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
Zurück zum Zitat French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588CrossRef French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588CrossRef
Zurück zum Zitat Gong C, Ni JP, Tian C, Su ZH (2021) Research in porous structure of cellulose aerogel made from cellulose nanofibrils. Int J Biol Macromol 172:573–579PubMedCrossRef Gong C, Ni JP, Tian C, Su ZH (2021) Research in porous structure of cellulose aerogel made from cellulose nanofibrils. Int J Biol Macromol 172:573–579PubMedCrossRef
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500PubMedCrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500PubMedCrossRef
Zurück zum Zitat He XH, Chen TT, Jiang TY, Wang C, Luan YH, Liu PT et al (2021) Preparation and adsorption properties of magnetic hydrophobic cellulose aerogels based on refined fibers. Carbohydr Polym 260:117790PubMedCrossRef He XH, Chen TT, Jiang TY, Wang C, Luan YH, Liu PT et al (2021) Preparation and adsorption properties of magnetic hydrophobic cellulose aerogels based on refined fibers. Carbohydr Polym 260:117790PubMedCrossRef
Zurück zum Zitat Hult EL, Larsson PT, Iversen T (2000) A comparative CP/MAS C-13-NMR study of cellulose structure in spruce wood and kraft pulp. Cellulose 7:35–55CrossRef Hult EL, Larsson PT, Iversen T (2000) A comparative CP/MAS C-13-NMR study of cellulose structure in spruce wood and kraft pulp. Cellulose 7:35–55CrossRef
Zurück zum Zitat Jiang F, Hsieh YL (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40PubMedCrossRef Jiang F, Hsieh YL (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40PubMedCrossRef
Zurück zum Zitat Jiang S, Zhang ML, Li MM, Liu L, Liu LF, Yu JY (2020) Cellulose nanofibril (CNF) based aerogels prepared by a facile process and the investigation of thermal insulation performance. Cellulose 27:6217–6233CrossRef Jiang S, Zhang ML, Li MM, Liu L, Liu LF, Yu JY (2020) Cellulose nanofibril (CNF) based aerogels prepared by a facile process and the investigation of thermal insulation performance. Cellulose 27:6217–6233CrossRef
Zurück zum Zitat Kargarzadeh H, Huang J, Lin N, Ahmad I, Mariano M, Dufresne A et al (2018) Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog Polym Sci 87:197–227CrossRef Kargarzadeh H, Huang J, Lin N, Ahmad I, Mariano M, Dufresne A et al (2018) Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog Polym Sci 87:197–227CrossRef
Zurück zum Zitat Khan A, Wen YB, Huq T, Ni YH (2018) Cellulosic nanomaterials in food and nutraceutical applications: a review. J Agric Food Chem 66:8–19PubMedCrossRef Khan A, Wen YB, Huq T, Ni YH (2018) Cellulosic nanomaterials in food and nutraceutical applications: a review. J Agric Food Chem 66:8–19PubMedCrossRef
Zurück zum Zitat Kim D, Kim J, Henzie J, Ko Y, Lim H, Kwon G et al (2021) Mesoporous Au films assembled on flexible cellulose nanopaper as high-performance SERS substrates. Chem Eng J 419:129445CrossRef Kim D, Kim J, Henzie J, Ko Y, Lim H, Kwon G et al (2021) Mesoporous Au films assembled on flexible cellulose nanopaper as high-performance SERS substrates. Chem Eng J 419:129445CrossRef
Zurück zum Zitat Kim D, Ko Y, Kwon G, Choo YM, You J (2018) Low-cost, high-performance plasmonic nanocomposites for hazardous chemical detection using surface enhanced Raman scattering. Sens Actuators B 274:30–36CrossRef Kim D, Ko Y, Kwon G, Choo YM, You J (2018) Low-cost, high-performance plasmonic nanocomposites for hazardous chemical detection using surface enhanced Raman scattering. Sens Actuators B 274:30–36CrossRef
Zurück zum Zitat Kim D, Ko Y, Kwon G, Kim UJ, Lee JH, You J (2019) 2,2,6,6-Tetramethylpiperidine-1-oxy-oxidized cellulose nanofiber-based nanocomposite papers for facile in situ surface-enhanced raman scattering detection. ACS Sustain Chem Eng 7:15640–15647CrossRef Kim D, Ko Y, Kwon G, Kim UJ, Lee JH, You J (2019) 2,2,6,6-Tetramethylpiperidine-1-oxy-oxidized cellulose nanofiber-based nanocomposite papers for facile in situ surface-enhanced raman scattering detection. ACS Sustain Chem Eng 7:15640–15647CrossRef
Zurück zum Zitat Kim SH, Kim JM, Ahn DB, Lee SY (2020) Cellulose Nanofiber/carbon nanotube-based bicontinuous ion/electron conduction networks for high-performance aqueous Zn-ion batteries. Small 16:2002837CrossRef Kim SH, Kim JM, Ahn DB, Lee SY (2020) Cellulose Nanofiber/carbon nanotube-based bicontinuous ion/electron conduction networks for high-performance aqueous Zn-ion batteries. Small 16:2002837CrossRef
Zurück zum Zitat Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741CrossRef Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741CrossRef
Zurück zum Zitat Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef
Zurück zum Zitat Kwon G, Lee K, Kim D, Jeon Y, Kim UJ, You J (2020) Cellulose nanocrystal-coated TEMPO-oxidized cellulose nanofiber films for high performance all-cellulose nanocomposites. J Hazard Mater 398:123100PubMedCrossRef Kwon G, Lee K, Kim D, Jeon Y, Kim UJ, You J (2020) Cellulose nanocrystal-coated TEMPO-oxidized cellulose nanofiber films for high performance all-cellulose nanocomposites. J Hazard Mater 398:123100PubMedCrossRef
Zurück zum Zitat Lee K, Jeon Y, Kim D, Kwon G, Kim UJ, Hong C et al (2021) Double-crosslinked cellulose nanofiber based bioplastic films for practical applications. Carbohydr Polym 260:117817PubMedCrossRef Lee K, Jeon Y, Kim D, Kwon G, Kim UJ, Hong C et al (2021) Double-crosslinked cellulose nanofiber based bioplastic films for practical applications. Carbohydr Polym 260:117817PubMedCrossRef
Zurück zum Zitat Leung ACW, Hrapovic S, Lam E, Liu YL, Male KB, Mahmoud KA et al (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305PubMedCrossRef Leung ACW, Hrapovic S, Lam E, Liu YL, Male KB, Mahmoud KA et al (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305PubMedCrossRef
Zurück zum Zitat Li CD, Chen ZF, Dong WF, Lin LL, Zhu XM, Liu QS et al (2021) A review of silicon-based aerogel thermal insulation materials: Performance optimization through composition and microstructure. J Non-Cryst Solids 553:120517CrossRef Li CD, Chen ZF, Dong WF, Lin LL, Zhu XM, Liu QS et al (2021) A review of silicon-based aerogel thermal insulation materials: Performance optimization through composition and microstructure. J Non-Cryst Solids 553:120517CrossRef
Zurück zum Zitat Li Y, Liu XF, Nie XY, Yang WW, Wang YD, Yu RH et al (2019) Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv Funct Mater 29:1807624CrossRef Li Y, Liu XF, Nie XY, Yang WW, Wang YD, Yu RH et al (2019) Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv Funct Mater 29:1807624CrossRef
Zurück zum Zitat Li YL, Liu YS, Liu Y, Lai WC, Huang F, Ou AP et al (2018) Ester crosslinking enhanced hydrophilic cellulose nanofibrils aerogel. ACS Sustain Chem Eng 6:11979–11988CrossRef Li YL, Liu YS, Liu Y, Lai WC, Huang F, Ou AP et al (2018) Ester crosslinking enhanced hydrophilic cellulose nanofibrils aerogel. ACS Sustain Chem Eng 6:11979–11988CrossRef
Zurück zum Zitat Liu S, Zhang Y, Jiang H, Wang XY, Zhang TM, Yao Y (2018) High CO2 adsorption by amino-modified bio-spherical cellulose nanofibres aerogels. Environ Chem Lett 16:605–614CrossRef Liu S, Zhang Y, Jiang H, Wang XY, Zhang TM, Yao Y (2018) High CO2 adsorption by amino-modified bio-spherical cellulose nanofibres aerogels. Environ Chem Lett 16:605–614CrossRef
Zurück zum Zitat Lu ZH, An XY, Zhang H, Liu LQ, Dai HQ, Cao HB et al (2020) Cationic cellulose nano-fibers (CCNF) as versatile flocculants of wood pulp for high wet web performance. Carbohydr Polym 229:115434PubMedCrossRef Lu ZH, An XY, Zhang H, Liu LQ, Dai HQ, Cao HB et al (2020) Cationic cellulose nano-fibers (CCNF) as versatile flocculants of wood pulp for high wet web performance. Carbohydr Polym 229:115434PubMedCrossRef
Zurück zum Zitat Lv D, Du HS, Che XP, Wu MY, Zhang YD, Liu C et al (2019) Tailored and integrated production of functional cellulose nanocrystals and cellulose nanofibrils via sustainable formic acid hydrolysis: kinetic study and characterization. ACS Sustainable Chem Eng 7:9449–9463CrossRef Lv D, Du HS, Che XP, Wu MY, Zhang YD, Liu C et al (2019) Tailored and integrated production of functional cellulose nanocrystals and cellulose nanofibrils via sustainable formic acid hydrolysis: kinetic study and characterization. ACS Sustainable Chem Eng 7:9449–9463CrossRef
Zurück zum Zitat Mautner A (2020) Nanocellulose water treatment membranes and filters: a review. Polym Int 69:741–751CrossRef Mautner A (2020) Nanocellulose water treatment membranes and filters: a review. Polym Int 69:741–751CrossRef
Zurück zum Zitat Nagarajan KJ, Ramanujam NR, Sanjay MR, Siengchin S, Rajan BS, Basha KS et al (2021) A comprehensive review on cellulose nanocrystals and cellulose nanofibers: pretreatment, preparation, and characterization. Polym Compos 42:1588–1630CrossRef Nagarajan KJ, Ramanujam NR, Sanjay MR, Siengchin S, Rajan BS, Basha KS et al (2021) A comprehensive review on cellulose nanocrystals and cellulose nanofibers: pretreatment, preparation, and characterization. Polym Compos 42:1588–1630CrossRef
Zurück zum Zitat Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428PubMedCrossRef Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428PubMedCrossRef
Zurück zum Zitat Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4265PubMedCrossRef Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4265PubMedCrossRef
Zurück zum Zitat Rol F, Belgacem MN, Gandini A, Bras J (2019) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 88:241–264CrossRef Rol F, Belgacem MN, Gandini A, Bras J (2019) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 88:241–264CrossRef
Zurück zum Zitat Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef
Zurück zum Zitat Sehaqui H, Salajkova M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832CrossRef Sehaqui H, Salajkova M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832CrossRef
Zurück zum Zitat Shamskar KR, Heidari H, Rashidi A (2019) Study on nanocellulose properties processed using different methods and their aerogels. J Polym Environ 27:1418–1428CrossRef Shamskar KR, Heidari H, Rashidi A (2019) Study on nanocellulose properties processed using different methods and their aerogels. J Polym Environ 27:1418–1428CrossRef
Zurück zum Zitat Shang QQ, Chen JQ, Yang XH, Liu CG, Hu Y, Zhou YH (2019) Fabrication and oil absorbency of superhydrophobic magnetic cellulose aerogels. J for Eng 4:105–111 Shang QQ, Chen JQ, Yang XH, Liu CG, Hu Y, Zhou YH (2019) Fabrication and oil absorbency of superhydrophobic magnetic cellulose aerogels. J for Eng 4:105–111
Zurück zum Zitat Song SW, Kim D, Kim J, You JM, Kim HM (2021) Flexible nanocellulose-based SERS substrates for fast analysis of hazardous materials by spiral scanning. J Hazard Mater 414:125160PubMedCrossRef Song SW, Kim D, Kim J, You JM, Kim HM (2021) Flexible nanocellulose-based SERS substrates for fast analysis of hazardous materials by spiral scanning. J Hazard Mater 414:125160PubMedCrossRef
Zurück zum Zitat Sun B, Zhang M, Hou QX, Liu R, Wu T, Si CL (2016) Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers. Cellulose 23:439–450CrossRef Sun B, Zhang M, Hou QX, Liu R, Wu T, Si CL (2016) Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers. Cellulose 23:439–450CrossRef
Zurück zum Zitat Sun L, Song GS, Sun YF, Fu Q, Pan CX (2020a) MXene/N-doped carbon foam with three-dimensional hollow neuron-like architecture for freestanding, highly compressible all solid-state supercapacitors. ACS Appl Mater Interfaces 12:44777–44788PubMedCrossRef Sun L, Song GS, Sun YF, Fu Q, Pan CX (2020a) MXene/N-doped carbon foam with three-dimensional hollow neuron-like architecture for freestanding, highly compressible all solid-state supercapacitors. ACS Appl Mater Interfaces 12:44777–44788PubMedCrossRef
Zurück zum Zitat Sun XX, Li MC, Ren SX, Lei TZ, Lee SY, Lee SY et al (2020) Zeolitic imidazolate framework-cellulose nanofiber hybrid membrane as Li-Ion battery separator: basic membrane property and battery performance. J Power Sources 454:227878CrossRef Sun XX, Li MC, Ren SX, Lei TZ, Lee SY, Lee SY et al (2020) Zeolitic imidazolate framework-cellulose nanofiber hybrid membrane as Li-Ion battery separator: basic membrane property and battery performance. J Power Sources 454:227878CrossRef
Zurück zum Zitat Sun Y, Chu YL, Wu WB, Xiao HN (2021) Nanocellulose-based lightweight porous materials: a review. Carbohydr Polym 255:117489PubMedCrossRef Sun Y, Chu YL, Wu WB, Xiao HN (2021) Nanocellulose-based lightweight porous materials: a review. Carbohydr Polym 255:117489PubMedCrossRef
Zurück zum Zitat Thomas B, Raj MC, Athira KB, Rubiyah MH, Joy J, Moores A et al (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118:11575–11625PubMedCrossRef Thomas B, Raj MC, Athira KB, Rubiyah MH, Joy J, Moores A et al (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118:11575–11625PubMedCrossRef
Zurück zum Zitat Tran VH, Kim JD, Kim JH, Kim SK, Lee JM (2020) Influence of cellulose nanocrystal on the cryogenic mechanical behavior and thermal conductivity of polyurethane composite. J Polym Environ 28:1169–1179CrossRef Tran VH, Kim JD, Kim JH, Kim SK, Lee JM (2020) Influence of cellulose nanocrystal on the cryogenic mechanical behavior and thermal conductivity of polyurethane composite. J Polym Environ 28:1169–1179CrossRef
Zurück zum Zitat Wan CC, Jiao Y, Wei S, Zhang LY, Wu YQ, Li J (2019) Functional nanocomposites from sustainable regenerated cellulose aerogels: a review. Chem Eng J 359:459–475CrossRef Wan CC, Jiao Y, Wei S, Zhang LY, Wu YQ, Li J (2019) Functional nanocomposites from sustainable regenerated cellulose aerogels: a review. Chem Eng J 359:459–475CrossRef
Zurück zum Zitat Wang XY, Zhang Y, Jiang H, Song YX, Zhou ZB, Zhao H (2016) Fabrication and characterization of nano-cellulose aerogels via supercritical CO drying technology. Mater Lett 183:179–182 Wang XY, Zhang Y, Jiang H, Song YX, Zhou ZB, Zhao H (2016) Fabrication and characterization of nano-cellulose aerogels via supercritical CO drying technology. Mater Lett 183:179–182
Zurück zum Zitat Wang CH, Kim J, Tang J, Na J, Kang YM, Kim M et al (2020a) Large-Scale synthesis of MOF-derived superporous carbon aerogels with extraordinary adsorption capacity for organic solvents. Angew Chem Int Ed 59:2066–2070CrossRef Wang CH, Kim J, Tang J, Na J, Kang YM, Kim M et al (2020a) Large-Scale synthesis of MOF-derived superporous carbon aerogels with extraordinary adsorption capacity for organic solvents. Angew Chem Int Ed 59:2066–2070CrossRef
Zurück zum Zitat Wang Z, Zhu WK, Huang RZ, Zhang Y, Jia C, Zhao H et al (2020b) Fabrication and characterization of cellulose nanofiber aerogels prepared via two different drying techniques. Polym 12:2583CrossRef Wang Z, Zhu WK, Huang RZ, Zhang Y, Jia C, Zhao H et al (2020b) Fabrication and characterization of cellulose nanofiber aerogels prepared via two different drying techniques. Polym 12:2583CrossRef
Zurück zum Zitat Wei S, Ching YC, Chuah CH (2020) Synthesis of chitosan aerogels as promising carriers for drug delivery: a review. Carbohydr Polym 231:115744PubMedCrossRef Wei S, Ching YC, Chuah CH (2020) Synthesis of chitosan aerogels as promising carriers for drug delivery: a review. Carbohydr Polym 231:115744PubMedCrossRef
Zurück zum Zitat Xu XZ, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009PubMedCrossRef Xu XZ, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009PubMedCrossRef
Zurück zum Zitat Xu WW, Liu CZ, Wu QL, Xie WW, Kim WY, Lee SY et al (2020) A stretchable solid-state zinc ion battery based on a cellulose nanofiber-polyacrylamide hydrogel electrolyte and a Mg0.23V2O5·1.0H2O cathode. J Mater Chem A 8:18327–18337CrossRef Xu WW, Liu CZ, Wu QL, Xie WW, Kim WY, Lee SY et al (2020) A stretchable solid-state zinc ion battery based on a cellulose nanofiber-polyacrylamide hydrogel electrolyte and a Mg0.23V2O5·1.0H2O cathode. J Mater Chem A 8:18327–18337CrossRef
Zurück zum Zitat Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26:6016–6025CrossRef Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26:6016–6025CrossRef
Zurück zum Zitat Yu YC, Shi XL, Liu L, Yao JM (2021) Highly compressible and durable superhydrophobic cellulose aerogels for oil/water emulsion separation with high flux. J Mater Sci 56:2763–2776CrossRef Yu YC, Shi XL, Liu L, Yao JM (2021) Highly compressible and durable superhydrophobic cellulose aerogels for oil/water emulsion separation with high flux. J Mater Sci 56:2763–2776CrossRef
Zurück zum Zitat Zhao GM, Du J, Chen WM, Pan MZ, Chen DY (2019) Preparation and thermostability of cellulose nanocrystals and nanofibrils from two sources of biomass: rice straw and poplar wood. Cellulose 26:8625–8643CrossRef Zhao GM, Du J, Chen WM, Pan MZ, Chen DY (2019) Preparation and thermostability of cellulose nanocrystals and nanofibrils from two sources of biomass: rice straw and poplar wood. Cellulose 26:8625–8643CrossRef
Zurück zum Zitat Zhang TM, Zhang Y, Jiang H, Liu S, Yao Y (2018a) Characterization of CNF/CNC composite aerogel. J for Eng 3:91–96 Zhang TM, Zhang Y, Jiang H, Liu S, Yao Y (2018a) Characterization of CNF/CNC composite aerogel. J for Eng 3:91–96
Zurück zum Zitat Zhang TM, Zhang Y, Wang XY, Liu S, Yao Y (2018b) Characterization of the nano-cellulose aerogel from mixing CNF and CNC with different ratio. Mater Lett 229:103–106CrossRef Zhang TM, Zhang Y, Wang XY, Liu S, Yao Y (2018b) Characterization of the nano-cellulose aerogel from mixing CNF and CNC with different ratio. Mater Lett 229:103–106CrossRef
Zurück zum Zitat Zhu WK, Ji MX, Chen FQ, Wang Z, Chen W, Xue YY et al (2020a) Formaldehyde-free resin impregnated paper reinforced with cellulose nanocrystal (CNC): formulation and property analysis. J Appl Polym Sci 137:48931CrossRef Zhu WK, Ji MX, Chen FQ, Wang Z, Chen W, Xue YY et al (2020a) Formaldehyde-free resin impregnated paper reinforced with cellulose nanocrystal (CNC): formulation and property analysis. J Appl Polym Sci 137:48931CrossRef
Zurück zum Zitat Zhu WK, Ji MX, Zhang Y, Wang Z, Chen W, Xue YY (2019) Synthesis and characterization of aminosilane grafted cellulose nanocrystal modified formaldehyde-free decorative paper and its CO2 adsorption capacity. Polym 11:2021CrossRef Zhu WK, Ji MX, Zhang Y, Wang Z, Chen W, Xue YY (2019) Synthesis and characterization of aminosilane grafted cellulose nanocrystal modified formaldehyde-free decorative paper and its CO2 adsorption capacity. Polym 11:2021CrossRef
Zurück zum Zitat Zhu WK, Yao Y, Zhang Y, Jiang H, Wang Z, Chen W et al (2020b) Preparation of an amine-modified cellulose nanocrystal aerogel by chemical vapor deposition and its application in CO2 capture. Ind Eng Chem Res 59:16660–16668CrossRef Zhu WK, Yao Y, Zhang Y, Jiang H, Wang Z, Chen W et al (2020b) Preparation of an amine-modified cellulose nanocrystal aerogel by chemical vapor deposition and its application in CO2 capture. Ind Eng Chem Res 59:16660–16668CrossRef
Metadaten
Titel
Aerogel nanoarchitectonics based on cellulose nanocrystals and nanofibers from eucalyptus pulp: preparation and comparative study
verfasst von
Wenkai Zhu
Yang Zhang
Xiaoyu Wang
Yan Wu
Minsu Han
Jungmok You
Chong Jia
Jeonghun Kim
Publikationsdatum
22.01.2022
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 2/2022
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-021-04370-z

Weitere Artikel der Ausgabe 2/2022

Cellulose 2/2022 Zur Ausgabe