Skip to main content
Erschienen in: Journal of Materials Science 20/2016

11.07.2016 | Review

Aerogels based on carbon nanomaterials

verfasst von: Sherif Araby, Aidong Qiu, Ruoyu Wang, Zhiheng Zhao, Chun-Hui Wang, Jun Ma

Erschienen in: Journal of Materials Science | Ausgabe 20/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbon nanomaterial-based aerogels have attracted significant interests from both academia and industry due to their extremely low bulk density, tunable surface functionality, high specific surface area, dielectric strength and thermal and electrical properties, and diverse applications. There is currently a lack of understanding of how processing factors would determine the structure–property relationships important to the wide applications of these aerogels. The present work thoroughly examines the preparation, structure, properties and applications of three types of aerogels. Firstly, we briefly review carbon aerogels prepared from the sol–gel of certain organic monomers, where the synthesis and processing conditions determine the structural features, such as pore volume and pore size distribution. Secondly, carbon nanotube (CNT) aerogels made by three methods are discussed to identify their relative advantageous over carbon aerogels in terms of electrical conductivity and mechanical robustness. Finally, graphene aerogels are reviewed, which can be prepared by four routes—template-directed CVD, in situ reduction assembly, template-directing assembly and cross-linking. In comparison with CNT aerogels, graphene aerogels can be made at lower manufacturing costs to achieve appropriate properties meeting various needs. The major applications of these aerogels include flexible energy storage devices and environmental applications, both of which exploit the key characteristics of carbon aerogels such as low density and high porosity, deformability, mechanical robustness, electrical conductivity, adsorption and electro-sorption. Challenges, research opportunities and future applications are also discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741CrossRef Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741CrossRef
2.
Zurück zum Zitat Nicolaon G, Teichner S (1968) On a new process of preparation of silica xerogels and aerogels and their textural properties. Bull Soc Chim Fr 5:1900–1906 Nicolaon G, Teichner S (1968) On a new process of preparation of silica xerogels and aerogels and their textural properties. Bull Soc Chim Fr 5:1900–1906
3.
Zurück zum Zitat Kanamori K (2011) Organic-inorganic hybrid aerogels with high mechanical properties via organotrialkoxysilane-derived sol-gel process. J Ceram Soc Jpn 119:16–22CrossRef Kanamori K (2011) Organic-inorganic hybrid aerogels with high mechanical properties via organotrialkoxysilane-derived sol-gel process. J Ceram Soc Jpn 119:16–22CrossRef
4.
Zurück zum Zitat Schmidt H, Scholze H (1986). In Fricke J (ed) Aerogels: proceedings of the first international symposium, Würzburg, Fed. Rep. of Germany September 23–25, 1985. Springer, Berlin Schmidt H, Scholze H (1986). In Fricke J (ed) Aerogels: proceedings of the first international symposium, Würzburg, Fed. Rep. of Germany September 23–25, 1985. Springer, Berlin
5.
Zurück zum Zitat Tewari PH, Hunt AJ, Lofftus KD (1985) Ambient-temperature supercritical drying of transparent silica aerogels. Mater Lett 3:363–367CrossRef Tewari PH, Hunt AJ, Lofftus KD (1985) Ambient-temperature supercritical drying of transparent silica aerogels. Mater Lett 3:363–367CrossRef
6.
Zurück zum Zitat Leventis N, Sotiriou-Leventis C, Mulik S et al (2008) Polymer nanoencapsulated mesoporous vanadia with unusual ductility at cryogenic temperatures. J Mater Chem 18:2475–2482CrossRef Leventis N, Sotiriou-Leventis C, Mulik S et al (2008) Polymer nanoencapsulated mesoporous vanadia with unusual ductility at cryogenic temperatures. J Mater Chem 18:2475–2482CrossRef
7.
Zurück zum Zitat Leventis N, Mulik S, Wang X et al (2008) Polymer nano-encapsulation of templated mesoporous silica monoliths with improved mechanical properties. J Non Cryst Solids 354:632–644CrossRef Leventis N, Mulik S, Wang X et al (2008) Polymer nano-encapsulation of templated mesoporous silica monoliths with improved mechanical properties. J Non Cryst Solids 354:632–644CrossRef
8.
Zurück zum Zitat Pekala R (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227CrossRef Pekala R (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227CrossRef
10.
12.
Zurück zum Zitat Mizushima Y, Hori M (1995) Alumina–silica aerogel catalysts prepared by two supercritical drying methods for methane combustion. J Mater Sci 30:1551–1555. doi:10.1007/bf00375263 CrossRef Mizushima Y, Hori M (1995) Alumina–silica aerogel catalysts prepared by two supercritical drying methods for methane combustion. J Mater Sci 30:1551–1555. doi:10.​1007/​bf00375263 CrossRef
13.
Zurück zum Zitat Du A, Zhou B, Zhang Z, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6:941–968CrossRef Du A, Zhou B, Zhang Z, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6:941–968CrossRef
14.
Zurück zum Zitat Davis M, Hung-Low F, Hikal WM, Hope-Weeks LJ (2013) Enhanced photocatalytic performance of Fe-doped SnO2 nanoarchitectures under UV irradiation: synthesis and activity. J Mater Sci 48:6404–6409. doi:10.1007/s10853-013-7440-4 CrossRef Davis M, Hung-Low F, Hikal WM, Hope-Weeks LJ (2013) Enhanced photocatalytic performance of Fe-doped SnO2 nanoarchitectures under UV irradiation: synthesis and activity. J Mater Sci 48:6404–6409. doi:10.​1007/​s10853-013-7440-4 CrossRef
15.
Zurück zum Zitat Pekala RW, Mayer ST, Kaschmitter JL, Kong FM (1994) In: Attia YA (ed) Sol-gel processing and applications. Springer, MA, US Pekala RW, Mayer ST, Kaschmitter JL, Kong FM (1994) In: Attia YA (ed) Sol-gel processing and applications. Springer, MA, US
16.
Zurück zum Zitat Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Very low conductivity threshold in bulk isotropic single-walled carbon nanotube–epoxy composites. Adv Mater 17:1186–1191CrossRef Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Very low conductivity threshold in bulk isotropic single-walled carbon nanotube–epoxy composites. Adv Mater 17:1186–1191CrossRef
17.
Zurück zum Zitat Bryning MB, Milkie DE, Islam MF, Hough LA, Kikkawa JM, Yodh AG (2007) Carbon nanotube aerogels. Adv Mater 19:661–664CrossRef Bryning MB, Milkie DE, Islam MF, Hough LA, Kikkawa JM, Yodh AG (2007) Carbon nanotube aerogels. Adv Mater 19:661–664CrossRef
18.
Zurück zum Zitat Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H-M (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428CrossRef Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H-M (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428CrossRef
19.
Zurück zum Zitat Hüsing N, Schubert U (1998) Aerogels—airy materials: chemistry, structure, and properties. Angew Chem Int Ed 37:22–45CrossRef Hüsing N, Schubert U (1998) Aerogels—airy materials: chemistry, structure, and properties. Angew Chem Int Ed 37:22–45CrossRef
20.
Zurück zum Zitat Leventis N (2007) Three-dimensional core-shell superstructures: mechanically strong aerogels. Acc Chem Res 40:874–884CrossRef Leventis N (2007) Three-dimensional core-shell superstructures: mechanically strong aerogels. Acc Chem Res 40:874–884CrossRef
21.
Zurück zum Zitat Moreno-Castilla C, Maldonado-Hódar F (2005) Carbon aerogels for catalysis applications: an overview. Carbon 43:455–465CrossRef Moreno-Castilla C, Maldonado-Hódar F (2005) Carbon aerogels for catalysis applications: an overview. Carbon 43:455–465CrossRef
22.
Zurück zum Zitat Biener J, Stadermann M, Suss M et al (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4:656–667CrossRef Biener J, Stadermann M, Suss M et al (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4:656–667CrossRef
23.
Zurück zum Zitat Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950CrossRef Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950CrossRef
24.
Zurück zum Zitat Mehling T, Smirnova I, Guenther U, Neubert R (2009) Polysaccharide-based aerogels as drug carriers. J Non Cryst Solids 355:2472–2479CrossRef Mehling T, Smirnova I, Guenther U, Neubert R (2009) Polysaccharide-based aerogels as drug carriers. J Non Cryst Solids 355:2472–2479CrossRef
25.
Zurück zum Zitat García-González C, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels—promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86:1425–1438CrossRef García-González C, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels—promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86:1425–1438CrossRef
26.
Zurück zum Zitat Pekala R, Farmer J, Alviso C et al (1998) Carbon aerogels for electrochemical applications. J Non Cryst Solids 225:74–80CrossRef Pekala R, Farmer J, Alviso C et al (1998) Carbon aerogels for electrochemical applications. J Non Cryst Solids 225:74–80CrossRef
27.
Zurück zum Zitat You B, Jiang J, Fan S (2014) Three-dimensional hierarchically porous all-carbon foams for supercapacitor. ACS Appl Mater Interfaces 6:15302–15308CrossRef You B, Jiang J, Fan S (2014) Three-dimensional hierarchically porous all-carbon foams for supercapacitor. ACS Appl Mater Interfaces 6:15302–15308CrossRef
28.
Zurück zum Zitat He S, Cheng X, Li Z, Shi X, Yang H, Zhang H (2015) Green and facile synthesis of sponge-reinforced silica aerogel and its pumping application for oil absorption. J Mater Sci 51:1292–1301. doi:10.1007/s10853-015-9427-9 CrossRef He S, Cheng X, Li Z, Shi X, Yang H, Zhang H (2015) Green and facile synthesis of sponge-reinforced silica aerogel and its pumping application for oil absorption. J Mater Sci 51:1292–1301. doi:10.​1007/​s10853-015-9427-9 CrossRef
30.
Zurück zum Zitat Antonietti M, Fechler N, Fellinger T-P (2013) Carbon aerogels and monoliths: control of porosity and nanoarchitecture via sol–gel routes. Chem Mater 26:196–210CrossRef Antonietti M, Fechler N, Fellinger T-P (2013) Carbon aerogels and monoliths: control of porosity and nanoarchitecture via sol–gel routes. Chem Mater 26:196–210CrossRef
32.
Zurück zum Zitat Hebalkar N, Arabale G, Sainkar SR et al (2005) Study of correlation of structural and surface properties with electrochemical behaviour in carbon aerogels. J Mater Sci 40:3777–3782. doi:10.1007/s10853-005-3318-4 CrossRef Hebalkar N, Arabale G, Sainkar SR et al (2005) Study of correlation of structural and surface properties with electrochemical behaviour in carbon aerogels. J Mater Sci 40:3777–3782. doi:10.​1007/​s10853-005-3318-4 CrossRef
33.
Zurück zum Zitat Zhang M, Fang S, Zakhidov AA et al (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309:1215–1219CrossRef Zhang M, Fang S, Zakhidov AA et al (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309:1215–1219CrossRef
35.
41.
Zurück zum Zitat Lorjai P, Chaisuwan T, Wongkasemjit S (2009) Porous structure of polybenzoxazine-based organic aerogel prepared by sol–gel process and their carbon aerogels. J Sol Gel Sci Technol 52:56–64. doi:10.1007/s10971-009-1992-4 CrossRef Lorjai P, Chaisuwan T, Wongkasemjit S (2009) Porous structure of polybenzoxazine-based organic aerogel prepared by sol–gel process and their carbon aerogels. J Sol Gel Sci Technol 52:56–64. doi:10.​1007/​s10971-009-1992-4 CrossRef
44.
45.
Zurück zum Zitat Tao Y, Endo M, Kaneko K (2008) A review of synthesis and nanopore structures of organic polymer aerogels and carbon aerogels. Recent Pat Chem Eng 1:192–200CrossRef Tao Y, Endo M, Kaneko K (2008) A review of synthesis and nanopore structures of organic polymer aerogels and carbon aerogels. Recent Pat Chem Eng 1:192–200CrossRef
47.
Zurück zum Zitat Al-Muhtaseb SA, Ritter JA (2003) Preparation and properties of resorcinol–formaldehyde organic and carbon gels. Adv Mater 15:101–114CrossRef Al-Muhtaseb SA, Ritter JA (2003) Preparation and properties of resorcinol–formaldehyde organic and carbon gels. Adv Mater 15:101–114CrossRef
48.
Zurück zum Zitat Li J, Wang X, Huang Q, Gamboa S, Sebastian P (2006) Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J Power Sources 158:784–788CrossRef Li J, Wang X, Huang Q, Gamboa S, Sebastian P (2006) Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J Power Sources 158:784–788CrossRef
50.
Zurück zum Zitat Fu R, Zheng B, Liu J et al (2003) The fabrication and characterization of carbon aerogels by gelation and supercritical drying in isopropanol. Adv Funct Mater 13:558–562. doi:10.1002/adfm.200304289 CrossRef Fu R, Zheng B, Liu J et al (2003) The fabrication and characterization of carbon aerogels by gelation and supercritical drying in isopropanol. Adv Funct Mater 13:558–562. doi:10.​1002/​adfm.​200304289 CrossRef
51.
Zurück zum Zitat Wei Y-Z, Fang B, Iwasa S, Kumagai M (2005) A novel electrode material for electric double-layer capacitors. J Power Sources 141:386–391CrossRef Wei Y-Z, Fang B, Iwasa S, Kumagai M (2005) A novel electrode material for electric double-layer capacitors. J Power Sources 141:386–391CrossRef
52.
Zurück zum Zitat Cook R, Letts S, Overturf III G, Lambert S, Wilemski G, Schroen-Carey D (1997) Final report UCRL-LR-105821-97-1, Lawrence Livermore National Laboratory, Livermore, CA Cook R, Letts S, Overturf III G, Lambert S, Wilemski G, Schroen-Carey D (1997) Final report UCRL-LR-105821-97-1, Lawrence Livermore National Laboratory, Livermore, CA
53.
Zurück zum Zitat Ying T-Y, Yang K-L, Yiacoumi S, Tsouris C (2002) Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel. J Colloid Interface Sci 250:18–27CrossRef Ying T-Y, Yang K-L, Yiacoumi S, Tsouris C (2002) Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel. J Colloid Interface Sci 250:18–27CrossRef
54.
Zurück zum Zitat Gurav JL, Jung I-K, Park H-H, Kang ES, Nadargi DY (2010) Silica aerogel: synthesis and applications. J Nanomater 2010:23CrossRef Gurav JL, Jung I-K, Park H-H, Kang ES, Nadargi DY (2010) Silica aerogel: synthesis and applications. J Nanomater 2010:23CrossRef
55.
58.
Zurück zum Zitat Fairén-Jiménez D, Carrasco-Marín F, Moreno-Castilla C (2006) Porosity and surface area of monolithic carbon aerogels prepared using alkaline carbonates and organic acids as polymerization catalysts. Carbon 44:2301–2307. doi:10.1016/j.carbon.2006.02.021 CrossRef Fairén-Jiménez D, Carrasco-Marín F, Moreno-Castilla C (2006) Porosity and surface area of monolithic carbon aerogels prepared using alkaline carbonates and organic acids as polymerization catalysts. Carbon 44:2301–2307. doi:10.​1016/​j.​carbon.​2006.​02.​021 CrossRef
60.
Zurück zum Zitat Singh R, Khardekar R, Kohli D, Singh M, Srivastava H, Gupta P (2010) Synthesis of platinum nanoparticles on carbon aerogel by ambient pressure drying method. Mater Lett 64:843–845CrossRef Singh R, Khardekar R, Kohli D, Singh M, Srivastava H, Gupta P (2010) Synthesis of platinum nanoparticles on carbon aerogel by ambient pressure drying method. Mater Lett 64:843–845CrossRef
61.
Zurück zum Zitat Leventis N, Chandrasekaran N, Sadekar AG, Sotiriou-Leventis C, Lu H (2009) One-pot synthesis of interpenetrating inorganic/organic networks of CuO/resorcinol–formaldehyde aerogels: nanostructured energetic materials. J Am Chem Soc 131:4576–4577CrossRef Leventis N, Chandrasekaran N, Sadekar AG, Sotiriou-Leventis C, Lu H (2009) One-pot synthesis of interpenetrating inorganic/organic networks of CuO/resorcinol–formaldehyde aerogels: nanostructured energetic materials. J Am Chem Soc 131:4576–4577CrossRef
62.
Zurück zum Zitat Maldonado-Hódar F, Ferro-García M, Rivera-Utrilla J, Moreno-Castilla C (1999) Synthesis and textural characteristics of organic aerogels, transition-metal-containing organic aerogels and their carbonized derivatives. Carbon 37:1199–1205CrossRef Maldonado-Hódar F, Ferro-García M, Rivera-Utrilla J, Moreno-Castilla C (1999) Synthesis and textural characteristics of organic aerogels, transition-metal-containing organic aerogels and their carbonized derivatives. Carbon 37:1199–1205CrossRef
63.
Zurück zum Zitat Bekyarova E, Kaneko K (1999) Microporous nature of Ce, Zr-doped carbon aerogels. Langmuir 15:7119–7121CrossRef Bekyarova E, Kaneko K (1999) Microporous nature of Ce, Zr-doped carbon aerogels. Langmuir 15:7119–7121CrossRef
64.
Zurück zum Zitat Maldonado-Hódar F, Moreno-Castilla C, Rivera-Utrilla J, Hanzawa Y, Yamada Y (2000) Catalytic graphitization of carbon aerogels by transition metals. Langmuir 16:4367–4373CrossRef Maldonado-Hódar F, Moreno-Castilla C, Rivera-Utrilla J, Hanzawa Y, Yamada Y (2000) Catalytic graphitization of carbon aerogels by transition metals. Langmuir 16:4367–4373CrossRef
65.
Zurück zum Zitat Bekyarova E, Kaneko K (2000) Structure and physical properties of tailor-made Ce, Zr-doped carbon aerogels. Adv Mater 12:1625–1628CrossRef Bekyarova E, Kaneko K (2000) Structure and physical properties of tailor-made Ce, Zr-doped carbon aerogels. Adv Mater 12:1625–1628CrossRef
66.
Zurück zum Zitat Hwang S-W, Hyun S-H (2004) Capacitance control of carbon aerogel electrodes. J Non Cryst Solids 347:238–245CrossRef Hwang S-W, Hyun S-H (2004) Capacitance control of carbon aerogel electrodes. J Non Cryst Solids 347:238–245CrossRef
72.
Zurück zum Zitat Fricke J, Tillotson T (1997) Aerogels: production, characterization, and applications. Thin Solid Films 297:212–223CrossRef Fricke J, Tillotson T (1997) Aerogels: production, characterization, and applications. Thin Solid Films 297:212–223CrossRef
73.
Zurück zum Zitat Yamamoto T, Nishimura T, Suzuki T, Tamon H (2001) Effect of drying conditions on mesoporosity of carbon precursors prepared by sol–gel polycondensation and freeze drying. Carbon 39:2374–2376CrossRef Yamamoto T, Nishimura T, Suzuki T, Tamon H (2001) Effect of drying conditions on mesoporosity of carbon precursors prepared by sol–gel polycondensation and freeze drying. Carbon 39:2374–2376CrossRef
74.
Zurück zum Zitat Pröbstle H, Schmitt C, Fricke J (2002) Button cell supercapacitors with monolithic carbon aerogels. J Power Sources 105:189–194CrossRef Pröbstle H, Schmitt C, Fricke J (2002) Button cell supercapacitors with monolithic carbon aerogels. J Power Sources 105:189–194CrossRef
75.
Zurück zum Zitat Wiener M, Reichenauer G, Scherb T, Fricke J (2004) Accelerating the synthesis of carbon aerogel precursors. J Non Cryst Solids 350:126–130CrossRef Wiener M, Reichenauer G, Scherb T, Fricke J (2004) Accelerating the synthesis of carbon aerogel precursors. J Non Cryst Solids 350:126–130CrossRef
76.
Zurück zum Zitat Kim S, Hwang S, Hyun S (2005) Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J Mater Sci 40:725–731CrossRef Kim S, Hwang S, Hyun S (2005) Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J Mater Sci 40:725–731CrossRef
78.
Zurück zum Zitat Qin G, Guo S (1999) Drying of RF gels with supercritical acetone. Carbon 37:1168–1169 Qin G, Guo S (1999) Drying of RF gels with supercritical acetone. Carbon 37:1168–1169
79.
Zurück zum Zitat Kuhn J, Brandt R, Mehling H, Petričević R, Fricke J (1998) In situ infrared observation of the pyrolysis process of carbon aerogels. J Non Cryst Solids 225:58–63CrossRef Kuhn J, Brandt R, Mehling H, Petričević R, Fricke J (1998) In situ infrared observation of the pyrolysis process of carbon aerogels. J Non Cryst Solids 225:58–63CrossRef
81.
Zurück zum Zitat Pekala R, Alviso C, Kong F, Hulsey S (1992) Aerogels derived from multifunctional organic monomers. J Non Cryst Solids 145:90–98CrossRef Pekala R, Alviso C, Kong F, Hulsey S (1992) Aerogels derived from multifunctional organic monomers. J Non Cryst Solids 145:90–98CrossRef
82.
Zurück zum Zitat Baumann TF, Fox GA, Satcher JH, Yoshizawa N, Fu R, Dresselhaus MS (2002) Synthesis and characterization of copper-doped carbon aerogels. Langmuir 18:7073–7076CrossRef Baumann TF, Fox GA, Satcher JH, Yoshizawa N, Fu R, Dresselhaus MS (2002) Synthesis and characterization of copper-doped carbon aerogels. Langmuir 18:7073–7076CrossRef
84.
Zurück zum Zitat Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912CrossRef Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912CrossRef
85.
Zurück zum Zitat Dresselhaus M, Eklund P (2000) Phonons in carbon nanotubes. Adv Phys 49:705–814CrossRef Dresselhaus M, Eklund P (2000) Phonons in carbon nanotubes. Adv Phys 49:705–814CrossRef
86.
Zurück zum Zitat Dai H (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35:1035–1044CrossRef Dai H (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35:1035–1044CrossRef
87.
Zurück zum Zitat Sherif A, Qingshi M, Liqun Z, Izzuddin Z, Peter M, Jun M (2015) Elastomeric composites based on carbon nanomaterials. Nanotechnology 26:112001CrossRef Sherif A, Qingshi M, Liqun Z, Izzuddin Z, Peter M, Jun M (2015) Elastomeric composites based on carbon nanomaterials. Nanotechnology 26:112001CrossRef
88.
Zurück zum Zitat Yao Z, Dekker C, Avouris P (2001) In: Dresselhaus MS, Dresselhaus G, Avouris P (eds) Carbon nanotubes: synthesis, structure, properties, and applications. Springer, Berlin Yao Z, Dekker C, Avouris P (2001) In: Dresselhaus MS, Dresselhaus G, Avouris P (eds) Carbon nanotubes: synthesis, structure, properties, and applications. Springer, Berlin
89.
Zurück zum Zitat Li Y-L, Kinloch IA, Windle AH (2004) Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304:276–278CrossRef Li Y-L, Kinloch IA, Windle AH (2004) Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304:276–278CrossRef
90.
Zurück zum Zitat Gui X, Wei J, Wang K et al (2010) Carbon nanotube sponges. Adv Mater 22:617–621CrossRef Gui X, Wei J, Wang K et al (2010) Carbon nanotube sponges. Adv Mater 22:617–621CrossRef
91.
Zurück zum Zitat Gui X, Cao A, Wei J et al (2010) Soft, highly conductive nanotube sponges and composites with controlled compressibility. ACS Nano 4:2320–2326. doi:10.1021/nn100114d CrossRef Gui X, Cao A, Wei J et al (2010) Soft, highly conductive nanotube sponges and composites with controlled compressibility. ACS Nano 4:2320–2326. doi:10.​1021/​nn100114d CrossRef
94.
Zurück zum Zitat Kim KH, Oh Y, Islam MF (2013) Mechanical and thermal management characteristics of ultrahigh surface area single-walled carbon nanotube aerogels. Adv Funct Mater 23:377–383. doi:10.1002/adfm.201201055 CrossRef Kim KH, Oh Y, Islam MF (2013) Mechanical and thermal management characteristics of ultrahigh surface area single-walled carbon nanotube aerogels. Adv Funct Mater 23:377–383. doi:10.​1002/​adfm.​201201055 CrossRef
96.
Zurück zum Zitat Schiffres SN, Kim KH, Hu L, McGaughey AJH, Islam MF, Malen JA (2012) Gas diffusion, energy transport, and thermal accommodation in single-walled carbon nanotube aerogels. Adv Funct Mater 22:5251–5258. doi:10.1002/adfm.201201285 CrossRef Schiffres SN, Kim KH, Hu L, McGaughey AJH, Islam MF, Malen JA (2012) Gas diffusion, energy transport, and thermal accommodation in single-walled carbon nanotube aerogels. Adv Funct Mater 22:5251–5258. doi:10.​1002/​adfm.​201201285 CrossRef
98.
Zurück zum Zitat Zhang X, Liu J, Xu B, Su Y, Luo Y (2011) Ultralight conducting polymer/carbon nanotube composite aerogels. Carbon 49:1884–1893CrossRef Zhang X, Liu J, Xu B, Su Y, Luo Y (2011) Ultralight conducting polymer/carbon nanotube composite aerogels. Carbon 49:1884–1893CrossRef
100.
102.
Zurück zum Zitat Zheng Q, Javadi A, Sabo R, Cai Z, Gong S (2013) Polyvinyl alcohol (PVA)–cellulose nanofibril (CNF)-multiwalled carbon nanotube (MWCNT) hybrid organic aerogels with superior mechanical properties. RSC Adv 3:20816–20823. doi:10.1039/C3RA42321B CrossRef Zheng Q, Javadi A, Sabo R, Cai Z, Gong S (2013) Polyvinyl alcohol (PVA)–cellulose nanofibril (CNF)-multiwalled carbon nanotube (MWCNT) hybrid organic aerogels with superior mechanical properties. RSC Adv 3:20816–20823. doi:10.​1039/​C3RA42321B CrossRef
103.
Zurück zum Zitat Kwon S-M, Kim H-S, Jin H-J (2009) Multiwalled carbon nanotube cryogels with aligned and non-aligned porous structures. Polymer 50:2786–2792CrossRef Kwon S-M, Kim H-S, Jin H-J (2009) Multiwalled carbon nanotube cryogels with aligned and non-aligned porous structures. Polymer 50:2786–2792CrossRef
104.
Zurück zum Zitat Yan J, Wang H, Wu T, Li X, Ding Z (2014) Elastic and electrically conductive carbon nanotubes/chitosan composites with lamellar structure. Compos A Appl Sci Manuf 67:1–7CrossRef Yan J, Wang H, Wu T, Li X, Ding Z (2014) Elastic and electrically conductive carbon nanotubes/chitosan composites with lamellar structure. Compos A Appl Sci Manuf 67:1–7CrossRef
105.
Zurück zum Zitat Zou J, Liu J, Karakoti AS et al (2010) Ultralight multiwalled carbon nanotube aerogel. ACS Nano 4:7293–7302CrossRef Zou J, Liu J, Karakoti AS et al (2010) Ultralight multiwalled carbon nanotube aerogel. ACS Nano 4:7293–7302CrossRef
106.
Zurück zum Zitat Wu Z, Chen Z, Du X et al (2004) Transparent, conductive carbon nanotube films. Science 305:1273–1276CrossRef Wu Z, Chen Z, Du X et al (2004) Transparent, conductive carbon nanotube films. Science 305:1273–1276CrossRef
107.
Zurück zum Zitat Aliev AE, Oh J, Kozlov ME et al (2009) Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 323:1575–1578CrossRef Aliev AE, Oh J, Kozlov ME et al (2009) Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 323:1575–1578CrossRef
108.
Zurück zum Zitat Kohlmeyer RR, Lor M, Deng J, Liu H, Chen J (2011) Preparation of stable carbon nanotube aerogels with high electrical conductivity and porosity. Carbon 49:2352–2361CrossRef Kohlmeyer RR, Lor M, Deng J, Liu H, Chen J (2011) Preparation of stable carbon nanotube aerogels with high electrical conductivity and porosity. Carbon 49:2352–2361CrossRef
109.
Zurück zum Zitat Zhou W, Islam M, Wang H et al (2004) Small angle neutron scattering from single-wall carbon nanotube suspensions: evidence for isolated rigid rods and rod networks. Chem Phys Lett 384:185–189CrossRef Zhou W, Islam M, Wang H et al (2004) Small angle neutron scattering from single-wall carbon nanotube suspensions: evidence for isolated rigid rods and rod networks. Chem Phys Lett 384:185–189CrossRef
110.
Zurück zum Zitat Islam M, Rojas E, Bergey D, Johnson A, Yodh A (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3:269–273CrossRef Islam M, Rojas E, Bergey D, Johnson A, Yodh A (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3:269–273CrossRef
111.
Zurück zum Zitat Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef
112.
Zurück zum Zitat Gao K, Shao Z, Wang X, Zhang Y, Wang W, Wang F (2013) Cellulose nanofibers/multi-walled carbon nanotube nanohybrid aerogel for all-solid-state flexible supercapacitors. RSC Adv 3:15058–15064CrossRef Gao K, Shao Z, Wang X, Zhang Y, Wang W, Wang F (2013) Cellulose nanofibers/multi-walled carbon nanotube nanohybrid aerogel for all-solid-state flexible supercapacitors. RSC Adv 3:15058–15064CrossRef
113.
Zurück zum Zitat Gutiérrez MC, Hortigüela MJ, Amarilla JM, Jiménez R, Ferrer ML, del Monte F (2007) Macroporous 3D architectures of self-assembled MWCNT surface decorated with Pt nanoparticles as anodes for a direct methanol fuel cell. J Phys Chem C 111:5557–5560CrossRef Gutiérrez MC, Hortigüela MJ, Amarilla JM, Jiménez R, Ferrer ML, del Monte F (2007) Macroporous 3D architectures of self-assembled MWCNT surface decorated with Pt nanoparticles as anodes for a direct methanol fuel cell. J Phys Chem C 111:5557–5560CrossRef
114.
Zurück zum Zitat Nishihara H, Mukai SR, Yamashita D, Tamon H (2005) Ordered macroporous silica by ice templating. Chem Mater 17:683–689CrossRef Nishihara H, Mukai SR, Yamashita D, Tamon H (2005) Ordered macroporous silica by ice templating. Chem Mater 17:683–689CrossRef
115.
Zurück zum Zitat Mahler W, Bechtold MF (1980) Freeze-formed silica fibres. Nature 285:27–28CrossRef Mahler W, Bechtold MF (1980) Freeze-formed silica fibres. Nature 285:27–28CrossRef
116.
Zurück zum Zitat H-m Tong, Noda I, Gryte CC (1984) CPS 768 Formation of anisotropic ice-agar composites by directional freezing. Colloid Polym Sci 262:589–595CrossRef H-m Tong, Noda I, Gryte CC (1984) CPS 768 Formation of anisotropic ice-agar composites by directional freezing. Colloid Polym Sci 262:589–595CrossRef
117.
Zurück zum Zitat Fukasawa T, Ando M, Ohji T, Kanzaki S (2001) Synthesis of porous ceramics with complex pore structure by freeze-dry processing. J Am Ceram Soc 84:230–232CrossRef Fukasawa T, Ando M, Ohji T, Kanzaki S (2001) Synthesis of porous ceramics with complex pore structure by freeze-dry processing. J Am Ceram Soc 84:230–232CrossRef
118.
119.
Zurück zum Zitat Deville S (2013) Ice-templating, freeze casting: beyond materials processing. J Mater Res 28:2202–2219CrossRef Deville S (2013) Ice-templating, freeze casting: beyond materials processing. J Mater Res 28:2202–2219CrossRef
120.
Zurück zum Zitat Mukai SR, Nishihara H, Tamon H (2003) Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous Mesoporous Mater 63:43–51CrossRef Mukai SR, Nishihara H, Tamon H (2003) Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous Mesoporous Mater 63:43–51CrossRef
121.
Zurück zum Zitat Shen X, Chen L, Li D et al (2011) Assembly of colloidal nanoparticles directed by the microstructures of polycrystalline ice. ACS Nano 5:8426–8433CrossRef Shen X, Chen L, Li D et al (2011) Assembly of colloidal nanoparticles directed by the microstructures of polycrystalline ice. ACS Nano 5:8426–8433CrossRef
122.
Zurück zum Zitat Gutiérrez MC, Ferrer ML, del Monte F (2008) Ice-templated materials: sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem Mater 20:634–648CrossRef Gutiérrez MC, Ferrer ML, del Monte F (2008) Ice-templated materials: sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem Mater 20:634–648CrossRef
123.
Zurück zum Zitat Dorcheh AS, Abbasi M (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Technol 199:10–26CrossRef Dorcheh AS, Abbasi M (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Technol 199:10–26CrossRef
124.
Zurück zum Zitat Jiang D, Chen Z (2013) Graphene chemistry: theoretical perspectives. Wiley, New YorkCrossRef Jiang D, Chen Z (2013) Graphene chemistry: theoretical perspectives. Wiley, New YorkCrossRef
125.
Zurück zum Zitat D-e Jiang, Sumpter BG, Dai S (2007) Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J Chem Phys 126:134701CrossRef D-e Jiang, Sumpter BG, Dai S (2007) Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J Chem Phys 126:134701CrossRef
126.
Zurück zum Zitat Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880CrossRef Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880CrossRef
127.
Zurück zum Zitat Kosynkin DV, Higginbotham AL, Sinitskii A et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876CrossRef Kosynkin DV, Higginbotham AL, Sinitskii A et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876CrossRef
130.
Zurück zum Zitat Kandare E, Khatibi AA, Yoo S et al (2015) Improving the through-thickness thermal and electrical conductivity of carbon fibre/epoxy laminates by exploiting synergy between graphene and silver nano-inclusions. Compos A Appl Sci Manuf 69:72–82. doi:10.1016/j.compositesa.2014.10.024 CrossRef Kandare E, Khatibi AA, Yoo S et al (2015) Improving the through-thickness thermal and electrical conductivity of carbon fibre/epoxy laminates by exploiting synergy between graphene and silver nano-inclusions. Compos A Appl Sci Manuf 69:72–82. doi:10.​1016/​j.​compositesa.​2014.​10.​024 CrossRef
131.
Zurück zum Zitat Yu Y, De Andrade LCX, Fang L, Ma J, Zhang W, Tang Y (2015) Graphene oxide and hyperbranched polymer-toughened hydrogels with improved absorption properties and durability. J Mater Sci 50:3457–3466. doi:10.1007/s10853-015-8905-4 Yu Y, De Andrade LCX, Fang L, Ma J, Zhang W, Tang Y (2015) Graphene oxide and hyperbranched polymer-toughened hydrogels with improved absorption properties and durability. J Mater Sci 50:3457–3466. doi:10.​1007/​s10853-015-8905-4
132.
Zurück zum Zitat Mahmoud M, Maher FE-K, Hao W et al (2015) High-performance supercapacitors using graphene/polyaniline composites deposited on kitchen sponge. Nanotechnology 26:075702CrossRef Mahmoud M, Maher FE-K, Hao W et al (2015) High-performance supercapacitors using graphene/polyaniline composites deposited on kitchen sponge. Nanotechnology 26:075702CrossRef
133.
Zurück zum Zitat Dichiara AB, Sherwood TJ, Benton-Smith J, Wilson JC, Weinstein SJ, Rogers RE (2014) Free-standing carbon nanotube/graphene hybrid papers as next generation adsorbents. Nanoscale 6:6322–6327. doi:10.1039/C4NR01028K CrossRef Dichiara AB, Sherwood TJ, Benton-Smith J, Wilson JC, Weinstein SJ, Rogers RE (2014) Free-standing carbon nanotube/graphene hybrid papers as next generation adsorbents. Nanoscale 6:6322–6327. doi:10.​1039/​C4NR01028K CrossRef
138.
Zurück zum Zitat Huang J, Tang Z, Yang Z, Guo B (2016) Bioinspired interface engineering in elastomer/graphene composites by constructing sacrificial metal–ligand bonds. Macromol Rapid Commun. doi:10.1002/marc.201600226 Huang J, Tang Z, Yang Z, Guo B (2016) Bioinspired interface engineering in elastomer/graphene composites by constructing sacrificial metal–ligand bonds. Macromol Rapid Commun. doi:10.​1002/​marc.​201600226
140.
Zurück zum Zitat Tang Z, Zhang L, Feng W, Guo B, Liu F, Jia D (2014) Rational design of graphene surface chemistry for high-performance rubber/graphene composites. Macromolecules 47:8663–8673. doi:10.1021/ma502201e CrossRef Tang Z, Zhang L, Feng W, Guo B, Liu F, Jia D (2014) Rational design of graphene surface chemistry for high-performance rubber/graphene composites. Macromolecules 47:8663–8673. doi:10.​1021/​ma502201e CrossRef
141.
Zurück zum Zitat Yousefi N, Sun X, Lin X et al (2014) Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv Mater 26:5480–5487. doi:10.1002/adma.201305293 CrossRef Yousefi N, Sun X, Lin X et al (2014) Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv Mater 26:5480–5487. doi:10.​1002/​adma.​201305293 CrossRef
144.
Zurück zum Zitat Meng Q, Jin J, Wang R et al (2014) Processable 3-nm thick graphene platelets of high electrical conductivity and their epoxy composites. Nanotechnology 25:125707CrossRef Meng Q, Jin J, Wang R et al (2014) Processable 3-nm thick graphene platelets of high electrical conductivity and their epoxy composites. Nanotechnology 25:125707CrossRef
145.
Zurück zum Zitat Tang G, Jiang Z-G, Li X, Zhang H-B, Dasari A, Yu Z-Z (2014) Three dimensional graphene aerogels and their electrically conductive composites. Carbon 77:592–599CrossRef Tang G, Jiang Z-G, Li X, Zhang H-B, Dasari A, Yu Z-Z (2014) Three dimensional graphene aerogels and their electrically conductive composites. Carbon 77:592–599CrossRef
147.
Zurück zum Zitat Araby S, Zaman I, Meng Q et al (2013) Melt compounding with graphene to develop functional, high-performance elastomers. Nanotechnology 24:165601CrossRef Araby S, Zaman I, Meng Q et al (2013) Melt compounding with graphene to develop functional, high-performance elastomers. Nanotechnology 24:165601CrossRef
148.
149.
Zurück zum Zitat Zhang L, Chen G, Hedhili MN, Zhang H, Wang P (2012) Three-dimensional assemblies of graphene prepared by a novel chemical reduction-induced self-assembly method. Nanoscale 4:7038–7045CrossRef Zhang L, Chen G, Hedhili MN, Zhang H, Wang P (2012) Three-dimensional assemblies of graphene prepared by a novel chemical reduction-induced self-assembly method. Nanoscale 4:7038–7045CrossRef
150.
Zurück zum Zitat Jia J, Sun X, Lin X, Shen X, Mai Y-W, Kim J-K (2014) Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 8:5774–5783CrossRef Jia J, Sun X, Lin X, Shen X, Mai Y-W, Kim J-K (2014) Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 8:5774–5783CrossRef
151.
Zurück zum Zitat Dong X-C, Xu H, Wang X-W et al (2012) 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213CrossRef Dong X-C, Xu H, Wang X-W et al (2012) 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213CrossRef
152.
Zurück zum Zitat Dong X, Wang X, Wang L et al (2012) 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. ACS Appl Mater Interfaces 4:3129–3133CrossRef Dong X, Wang X, Wang L et al (2012) 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. ACS Appl Mater Interfaces 4:3129–3133CrossRef
153.
Zurück zum Zitat Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324–4330CrossRef Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324–4330CrossRef
154.
Zurück zum Zitat Chen W, Yan L (2011) In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 3:3132–3137CrossRef Chen W, Yan L (2011) In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 3:3132–3137CrossRef
155.
Zurück zum Zitat Wang Z, Shen X, Akbari Garakani M et al (2015) Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties. ACS Appl Mater Interfaces 7:5538–5549CrossRef Wang Z, Shen X, Akbari Garakani M et al (2015) Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties. ACS Appl Mater Interfaces 7:5538–5549CrossRef
156.
Zurück zum Zitat Hsieh T-H, Huang Y-S, Shen M-Y (2015) Mechanical properties and toughness of carbon aerogel/epoxy polymer composites. J Mater Sci 50:3258–3266 Hsieh T-H, Huang Y-S, Shen M-Y (2015) Mechanical properties and toughness of carbon aerogel/epoxy polymer composites. J Mater Sci 50:3258–3266
157.
Zurück zum Zitat Yin S, Zhang Y, Kong J et al (2011) Assembly of graphene sheets into hierarchical structures for high-performance energy storage. ACS Nano 5:3831–3838CrossRef Yin S, Zhang Y, Kong J et al (2011) Assembly of graphene sheets into hierarchical structures for high-performance energy storage. ACS Nano 5:3831–3838CrossRef
158.
Zurück zum Zitat Lee SH, Kim HW, Hwang JO et al (2010) Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films. Angew Chem Int Ed 49:10084–10088CrossRef Lee SH, Kim HW, Hwang JO et al (2010) Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films. Angew Chem Int Ed 49:10084–10088CrossRef
159.
Zurück zum Zitat Estevez L, Kelarakis A, Gong Q, Da’as EH, Giannelis EP (2011) Multifunctional graphene/platinum/nafion hybrids via ice templating. J Am Chem Soc 133:6122–6125CrossRef Estevez L, Kelarakis A, Gong Q, Da’as EH, Giannelis EP (2011) Multifunctional graphene/platinum/nafion hybrids via ice templating. J Am Chem Soc 133:6122–6125CrossRef
160.
Zurück zum Zitat Wang CC, Chen HC, Lu SY (2014) Manganese oxide/graphene aerogel composites as an outstanding supercapacitor electrode material. Chemistry 20:517–523CrossRef Wang CC, Chen HC, Lu SY (2014) Manganese oxide/graphene aerogel composites as an outstanding supercapacitor electrode material. Chemistry 20:517–523CrossRef
161.
Zurück zum Zitat Guo P, Song H, Chen X (2010) Hollow graphene oxide spheres self-assembled by W/O emulsion. J Mater Chem 20:4867–4874CrossRef Guo P, Song H, Chen X (2010) Hollow graphene oxide spheres self-assembled by W/O emulsion. J Mater Chem 20:4867–4874CrossRef
162.
Zurück zum Zitat Zhao Y, Liu J, Hu Y et al (2013) Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv Mater 25:591–595CrossRef Zhao Y, Liu J, Hu Y et al (2013) Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv Mater 25:591–595CrossRef
163.
Zurück zum Zitat Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J (2013) Ultralight and highly compressible graphene aerogels. Adv Mater 25:2219–2223CrossRef Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J (2013) Ultralight and highly compressible graphene aerogels. Adv Mater 25:2219–2223CrossRef
164.
Zurück zum Zitat Li J, Li J, Meng H et al (2014) Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids. J Mater Chem A 2:2934–2941CrossRef Li J, Li J, Meng H et al (2014) Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids. J Mater Chem A 2:2934–2941CrossRef
165.
Zurück zum Zitat Zheng Q, Cai Z, Ma Z, Gong S (2015) Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl Mater Interfaces 7:3263–3271CrossRef Zheng Q, Cai Z, Ma Z, Gong S (2015) Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl Mater Interfaces 7:3263–3271CrossRef
166.
Zurück zum Zitat Han Z, Tang Z, Li P, Yang G, Zheng Q, Yang J (2013) Ammonia solution strengthened three-dimensional macro-porous graphene aerogel. Nanoscale 5:5462–5467CrossRef Han Z, Tang Z, Li P, Yang G, Zheng Q, Yang J (2013) Ammonia solution strengthened three-dimensional macro-porous graphene aerogel. Nanoscale 5:5462–5467CrossRef
167.
Zurück zum Zitat Zhang X, Sui Z, Xu B et al (2011) Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J Mater Chem 21:6494–6497CrossRef Zhang X, Sui Z, Xu B et al (2011) Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J Mater Chem 21:6494–6497CrossRef
168.
Zurück zum Zitat Qiu L, Liu JZ, Chang SL, Wu Y, Li D (2012) Biomimetic superelastic graphene-based cellular monoliths. Nat Commun 3:1241CrossRef Qiu L, Liu JZ, Chang SL, Wu Y, Li D (2012) Biomimetic superelastic graphene-based cellular monoliths. Nat Commun 3:1241CrossRef
170.
Zurück zum Zitat Wei H, Gu H, Guo J, Wei S, Guo Z (2013) Electropolymerized polyaniline nanocomposites from multi-walled carbon nanotubes with tuned surface functionalities for electrochemical energy storage. J Electrochem Soc 160:G3038–G3045CrossRef Wei H, Gu H, Guo J, Wei S, Guo Z (2013) Electropolymerized polyaniline nanocomposites from multi-walled carbon nanotubes with tuned surface functionalities for electrochemical energy storage. J Electrochem Soc 160:G3038–G3045CrossRef
171.
Zurück zum Zitat Joo Jeong Y, Islam MF (2015) Compressible elastomeric aerogels of hexagonal boron nitride and single-walled carbon nanotubes. Nanoscale 7:12888–12894. doi:10.1039/C5NR01981H CrossRef Joo Jeong Y, Islam MF (2015) Compressible elastomeric aerogels of hexagonal boron nitride and single-walled carbon nanotubes. Nanoscale 7:12888–12894. doi:10.​1039/​C5NR01981H CrossRef
172.
Zurück zum Zitat Worsley MA, Pauzauskie PJ, Kucheyev SO et al (2009) Properties of single-walled carbon nanotube-based aerogels as a function of nanotube loading. Acta Mater 57:5131–5136CrossRef Worsley MA, Pauzauskie PJ, Kucheyev SO et al (2009) Properties of single-walled carbon nanotube-based aerogels as a function of nanotube loading. Acta Mater 57:5131–5136CrossRef
173.
Zurück zum Zitat Worsley MA, Satcher JH Jr, Baumann TF (2008) Synthesis and characterization of monolithic carbon aerogel nanocomposites containing double-walled carbon nanotubes. Langmuir 24:9763–9766CrossRef Worsley MA, Satcher JH Jr, Baumann TF (2008) Synthesis and characterization of monolithic carbon aerogel nanocomposites containing double-walled carbon nanotubes. Langmuir 24:9763–9766CrossRef
174.
Zurück zum Zitat Worsley MA, Kucheyev SO, Satcher JH Jr, Hamza AV, Baumann TF (2009) Mechanically robust and electrically conductive carbon nanotube foams. Appl Phys Lett 94:073115CrossRef Worsley MA, Kucheyev SO, Satcher JH Jr, Hamza AV, Baumann TF (2009) Mechanically robust and electrically conductive carbon nanotube foams. Appl Phys Lett 94:073115CrossRef
175.
Zurück zum Zitat Satcher JH Jr (2009) Stiff and electrically conductive composites of carbon nanotube aerogels and polymers. J Mater Chem 19:3370–3372CrossRef Satcher JH Jr (2009) Stiff and electrically conductive composites of carbon nanotube aerogels and polymers. J Mater Chem 19:3370–3372CrossRef
176.
Zurück zum Zitat Charnvanichborikarn S, Shin S, Worsley M et al (2014) Nanoporous Cu–C composites based on carbon-nanotube aerogels. J Mater Chem A 2:962–967CrossRef Charnvanichborikarn S, Shin S, Worsley M et al (2014) Nanoporous Cu–C composites based on carbon-nanotube aerogels. J Mater Chem A 2:962–967CrossRef
178.
179.
Zurück zum Zitat Tang L, Li X, Ji R et al (2012) Bottom-up synthesis of large-scale graphene oxide nanosheets. J Mater Chem 22:5676–5683CrossRef Tang L, Li X, Ji R et al (2012) Bottom-up synthesis of large-scale graphene oxide nanosheets. J Mater Chem 22:5676–5683CrossRef
180.
Zurück zum Zitat Wilson E, Islam MF (2015) Ultracompressible, high-rate supercapacitors from graphene-coated carbon nanotube aerogels. ACS Appl Mater Interfaces 7:5612–5618CrossRef Wilson E, Islam MF (2015) Ultracompressible, high-rate supercapacitors from graphene-coated carbon nanotube aerogels. ACS Appl Mater Interfaces 7:5612–5618CrossRef
182.
Zurück zum Zitat Hu H, Zhao Z, Gogotsi Y, Qiu J (2014) Compressible carbon nanotube–graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption. Environ Sci Technol Lett 1:214–220. doi:10.1021/ez500021w CrossRef Hu H, Zhao Z, Gogotsi Y, Qiu J (2014) Compressible carbon nanotube–graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption. Environ Sci Technol Lett 1:214–220. doi:10.​1021/​ez500021w CrossRef
183.
Zurück zum Zitat Wan W, Zhang R, Li W et al (2016) Graphene-carbon nanotube aerogel as an ultra-light, compressible and recyclable highly efficient absorbent for oil and dyes. Environ Sci Nano 3:107–113. doi:10.1039/C5EN00125K CrossRef Wan W, Zhang R, Li W et al (2016) Graphene-carbon nanotube aerogel as an ultra-light, compressible and recyclable highly efficient absorbent for oil and dyes. Environ Sci Nano 3:107–113. doi:10.​1039/​C5EN00125K CrossRef
184.
Zurück zum Zitat Lee B, Lee S, Lee M et al (2015) Carbon nanotube-bonded graphene hybrid aerogels and their application to water purification. Nanoscale 7:6782–6789. doi:10.1039/C5NR01018G CrossRef Lee B, Lee S, Lee M et al (2015) Carbon nanotube-bonded graphene hybrid aerogels and their application to water purification. Nanoscale 7:6782–6789. doi:10.​1039/​C5NR01018G CrossRef
188.
Zurück zum Zitat Chen W, Li S, Chen C, Yan L (2011) Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater 23:5679–5683. doi:10.1002/adma.201102838 CrossRef Chen W, Li S, Chen C, Yan L (2011) Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater 23:5679–5683. doi:10.​1002/​adma.​201102838 CrossRef
189.
Zurück zum Zitat Campbell AS, Jeong YJ, Geier SM, Koepsel RR, Russell AJ, Islam MF (2015) Membrane/mediator-free rechargeable enzymatic biofuel cell utilizing graphene/single-wall carbon nanotube cogel electrodes. ACS Appl Mater Interfaces 7:4056–4065. doi:10.1021/am507801x CrossRef Campbell AS, Jeong YJ, Geier SM, Koepsel RR, Russell AJ, Islam MF (2015) Membrane/mediator-free rechargeable enzymatic biofuel cell utilizing graphene/single-wall carbon nanotube cogel electrodes. ACS Appl Mater Interfaces 7:4056–4065. doi:10.​1021/​am507801x CrossRef
190.
Zurück zum Zitat Yang X, Li C, Zhang G, Yang C (2015) Polystyrene-derived carbon with hierarchical macro–meso–microporous structure for high-rate lithium-ion batteries application. J Mater Sci 50:6649–6655. doi:10.1007/s10853-015-9214-7 CrossRef Yang X, Li C, Zhang G, Yang C (2015) Polystyrene-derived carbon with hierarchical macro–meso–microporous structure for high-rate lithium-ion batteries application. J Mater Sci 50:6649–6655. doi:10.​1007/​s10853-015-9214-7 CrossRef
191.
Zurück zum Zitat Zhang Y, Wu X, Fu Y, Shen W, Zeng X, Ding W (2014) Carbon aerogel supported Pt–Zn catalyst and its oxygen reduction catalytic performance in magnesium-air batteries. J Mater Res 29:2863–2870. doi:10.1557/jmr.2014.343 CrossRef Zhang Y, Wu X, Fu Y, Shen W, Zeng X, Ding W (2014) Carbon aerogel supported Pt–Zn catalyst and its oxygen reduction catalytic performance in magnesium-air batteries. J Mater Res 29:2863–2870. doi:10.​1557/​jmr.​2014.​343 CrossRef
192.
Zurück zum Zitat Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859CrossRef Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859CrossRef
193.
Zurück zum Zitat Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013CrossRef Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013CrossRef
194.
Zurück zum Zitat Sui Z, Meng Q, Zhang X, Ma R, Cao B (2012) Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification. J Mater Chem 22:8767–8771. doi:10.1039/C2JM00055E CrossRef Sui Z, Meng Q, Zhang X, Ma R, Cao B (2012) Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification. J Mater Chem 22:8767–8771. doi:10.​1039/​C2JM00055E CrossRef
195.
Zurück zum Zitat Sun H, Xu Z, Gao C (2013) Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater 25:2554–2560CrossRef Sun H, Xu Z, Gao C (2013) Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater 25:2554–2560CrossRef
198.
Zurück zum Zitat Chen L, Wang X, Zhang X, Zhang H (2012) 3D porous and redox-active prussian blue-in-graphene aerogels for highly efficient electrochemical detection of H2O2. J Mater Chem 22:22090–22096. doi:10.1039/C2JM34541B CrossRef Chen L, Wang X, Zhang X, Zhang H (2012) 3D porous and redox-active prussian blue-in-graphene aerogels for highly efficient electrochemical detection of H2O2. J Mater Chem 22:22090–22096. doi:10.​1039/​C2JM34541B CrossRef
199.
Zurück zum Zitat Scherer GW, Smith DM, Stein D (1995) Deformation of aerogels during characterization. J Non Cryst Solids 186:309–315CrossRef Scherer GW, Smith DM, Stein D (1995) Deformation of aerogels during characterization. J Non Cryst Solids 186:309–315CrossRef
200.
Zurück zum Zitat Sun H, La P, Zhu Z et al (2014) Hydrophobic carbon nanotubes for removal of oils and organics from water. J Mater Sci 49:6855–6861CrossRef Sun H, La P, Zhu Z et al (2014) Hydrophobic carbon nanotubes for removal of oils and organics from water. J Mater Sci 49:6855–6861CrossRef
201.
Zurück zum Zitat Humplik T, Lee J, O’Hern SC et al (2011) Nanostructured materials for water desalination. Nanotechnology 22:292001CrossRef Humplik T, Lee J, O’Hern SC et al (2011) Nanostructured materials for water desalination. Nanotechnology 22:292001CrossRef
202.
Zurück zum Zitat Srivastava A, Srivastava O, Talapatra S, Vajtai R, Ajayan P (2004) Carbon nanotube filters. Nat Mater 3:610–614CrossRef Srivastava A, Srivastava O, Talapatra S, Vajtai R, Ajayan P (2004) Carbon nanotube filters. Nat Mater 3:610–614CrossRef
203.
Zurück zum Zitat Li X, Zhu G, Dordick JS, Ajayan PM (2007) Compression-modulated tunable-pore carbon-nanotube membrane filters. Small 3:595–599CrossRef Li X, Zhu G, Dordick JS, Ajayan PM (2007) Compression-modulated tunable-pore carbon-nanotube membrane filters. Small 3:595–599CrossRef
204.
Zurück zum Zitat Samad YA, Li Y, Alhassan SM, Liao K (2015) Novel graphene foam composite with adjustable sensitivity for sensor applications. ACS Appl Mater Interfaces 7:9195–9202CrossRef Samad YA, Li Y, Alhassan SM, Liao K (2015) Novel graphene foam composite with adjustable sensitivity for sensor applications. ACS Appl Mater Interfaces 7:9195–9202CrossRef
206.
Zurück zum Zitat Li X, Chen Y, Kumar A, Mahmoud A, Nychka JA, Chung H-J (2015) Sponge-templated macroporous graphene network for piezoelectric ZnO nanogenerator. ACS Appl Mater Interfaces 7:20753–20760. doi:10.1021/acsami.5b05702 CrossRef Li X, Chen Y, Kumar A, Mahmoud A, Nychka JA, Chung H-J (2015) Sponge-templated macroporous graphene network for piezoelectric ZnO nanogenerator. ACS Appl Mater Interfaces 7:20753–20760. doi:10.​1021/​acsami.​5b05702 CrossRef
207.
Zurück zum Zitat Ma J, Mo MS, Du XS, Dai SR, Luck I (2008) Study of epoxy toughened by in situ formed rubber nanoparticles. J Appl Polym Sci 110:304–312CrossRef Ma J, Mo MS, Du XS, Dai SR, Luck I (2008) Study of epoxy toughened by in situ formed rubber nanoparticles. J Appl Polym Sci 110:304–312CrossRef
Metadaten
Titel
Aerogels based on carbon nanomaterials
verfasst von
Sherif Araby
Aidong Qiu
Ruoyu Wang
Zhiheng Zhao
Chun-Hui Wang
Jun Ma
Publikationsdatum
11.07.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 20/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0141-z

Weitere Artikel der Ausgabe 20/2016

Journal of Materials Science 20/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.