Skip to main content

2014 | OriginalPaper | Buchkapitel

Aggregation of Charged Colloidal Particles

verfasst von : Nikolai I. Lebovka

Erschienen in: Polyelectrolyte Complexes in the Dispersed and Solid State I

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter reviews the recent progress in aggregation of colloidal particles with long-range interactions, including simple colloids and polyelectrolytes. The relevant interactions between colloidal particles, including Born repulsion, van der Waals, electrostatic, structural solvation, hydrophobic hydrodynamic interactions and attraction between like-charge colloids, charge nonuniformity, and adsorbed polymer, are analyzed. The main types of computer models used for simulation of cluster morphology and aggregation kinetics of the different interacting species (similarly and oppositely charged particles and polyelectrolytes) are reviewed. The main scaling laws for different aggregating kernels that describe diffusion-limited, reaction-limited, gelling, and retarded aggregations are also presented and analyzed.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mohanraj VYC (2006) Nanoparticles a review. Trop J Pharm Res 5(1):561–573 Mohanraj VYC (2006) Nanoparticles a review. Trop J Pharm Res 5(1):561–573
2.
Zurück zum Zitat Hartig S, Greene R, Dikov M, Prokop A, Davidson J (2007) Multifunctional nanoparticulate polyelectrolyte complexes. Pharmaceut Res 24:2353–2369. doi:10.1007/s11095-007-9459-1 Hartig S, Greene R, Dikov M, Prokop A, Davidson J (2007) Multifunctional nanoparticulate polyelectrolyte complexes. Pharmaceut Res 24:2353–2369. doi:10.​1007/​s11095-007-9459-1
3.
Zurück zum Zitat Lankalapalli S, Kolapalli VRM (2009) Polyelectrolyte complexes: a review of their applicability in drug delivery technology. Indian J Pharm Sci 71(5):481–487. doi:10.4103/0250-474X.58165 Lankalapalli S, Kolapalli VRM (2009) Polyelectrolyte complexes: a review of their applicability in drug delivery technology. Indian J Pharm Sci 71(5):481–487. doi:10.​4103/​0250-474X.​58165
4.
Zurück zum Zitat Muller M, Kesler B, Frohlich J, Poeschla S, Torger B (2011) Polyelectrolyte complex nanoparticles of poly(ethyleneimine) and poly(acrylic acid): preparation and applications. Polymer 3(2):762–778. doi:10.3390/polym3020762 Muller M, Kesler B, Frohlich J, Poeschla S, Torger B (2011) Polyelectrolyte complex nanoparticles of poly(ethyleneimine) and poly(acrylic acid): preparation and applications. Polymer 3(2):762–778. doi:10.​3390/​polym3020762
5.
Zurück zum Zitat Müller M, Reihs T, Ouyang W (2005) Preparation of monomodal polyelectrolyte complex nanoparticles of pdadmac/poly(maleic acid-alt-alpha-methylstyrene) by consecutive centrifugation. Langmuir 21(1):465–469 Müller M, Reihs T, Ouyang W (2005) Preparation of monomodal polyelectrolyte complex nanoparticles of pdadmac/poly(maleic acid-alt-alpha-methylstyrene) by consecutive centrifugation. Langmuir 21(1):465–469
6.
Zurück zum Zitat Dautzenberg H (2000) Light scattering studies on polyelectrolyte complexes. Macromol Symp 162:1–21 Dautzenberg H (2000) Light scattering studies on polyelectrolyte complexes. Macromol Symp 162:1–21
7.
Zurück zum Zitat Panyam P, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347 Panyam P, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347
8.
Zurück zum Zitat Derjaguin BV, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys Chim USSR 14:633–662 Derjaguin BV, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys Chim USSR 14:633–662
9.
Zurück zum Zitat Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam
11.
Zurück zum Zitat Eastman J (2010) Stability of charge-stabilised colloids. In: Colloid science: principles, methods and applications, 2nd edn. Wiley-Blackwell Eastman J (2010) Stability of charge-stabilised colloids. In: Colloid science: principles, methods and applications, 2nd edn. Wiley-Blackwell
12.
Zurück zum Zitat Derjaguin BV (1934) Untersuchungen ueber die reibung und adhaesion IV. Theorie des anhaften kleiner teilchen. Kolloid Z 69:155–164 Derjaguin BV (1934) Untersuchungen ueber die reibung und adhaesion IV. Theorie des anhaften kleiner teilchen. Kolloid Z 69:155–164
13.
Zurück zum Zitat Israelachvili J (1991) Intermolecular and surface forces. Academic, New York Israelachvili J (1991) Intermolecular and surface forces. Academic, New York
14.
Zurück zum Zitat Shaw DJ (1992) Introduction to colloid and surface chemistry. Butterworth-Heinemann, Oxford Shaw DJ (1992) Introduction to colloid and surface chemistry. Butterworth-Heinemann, Oxford
15.
Zurück zum Zitat Mahanty J, Ninham B (1976) Dispersion forces. Academic, New York Mahanty J, Ninham B (1976) Dispersion forces. Academic, New York
16.
Zurück zum Zitat Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersions. Cambridge University Press, New York Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersions. Cambridge University Press, New York
18.
Zurück zum Zitat dos Santos AP, Diehl A, Levin Y (2009) Electrostatic correlations in colloidal suspensions: density profiles and effective charges beyond the Poisson-Boltzmann theory. J Chem Phys 130:124110 dos Santos AP, Diehl A, Levin Y (2009) Electrostatic correlations in colloidal suspensions: density profiles and effective charges beyond the Poisson-Boltzmann theory. J Chem Phys 130:124110
19.
20.
Zurück zum Zitat Ohshima H, Healy TW, White LR (1982) Improvement on the Hogg-Healy-Fuerstenau formulas for the interaction of dissimilar double layers: I. Second and third approximations for moderate potentials. J Colloid Interface Sci 89(2):484–493. doi:10.1016/0021-9797(82)90199-0 Ohshima H, Healy TW, White LR (1982) Improvement on the Hogg-Healy-Fuerstenau formulas for the interaction of dissimilar double layers: I. Second and third approximations for moderate potentials. J Colloid Interface Sci 89(2):484–493. doi:10.​1016/​0021-9797(82)90199-0
21.
Zurück zum Zitat Elimelech M, Gregory J, Jia XWR (1995) Particle deposition and aggregation – measurement, modelling and simulation. Elsevier, Amsterdam Elimelech M, Gregory J, Jia XWR (1995) Particle deposition and aggregation – measurement, modelling and simulation. Elsevier, Amsterdam
22.
Zurück zum Zitat Boroudjerdi H, Kim YW, Naji A, Netz R, Schlagberger X, Serr A (2005) Statics and dynamics of strongly charged soft matter. Phys Rep 416(3–4):129–199. doi:10.1016/j.physrep. 2005.06.006 Boroudjerdi H, Kim YW, Naji A, Netz R, Schlagberger X, Serr A (2005) Statics and dynamics of strongly charged soft matter. Phys Rep 416(3–4):129–199. doi:10.​1016/​j.​physrep. 2005.06.006
24.
25.
Zurück zum Zitat Larsen AE, Grier DG (1997) Like-charge attractions in metastable colloidal crystallites. Nature 385:230–233 Larsen AE, Grier DG (1997) Like-charge attractions in metastable colloidal crystallites. Nature 385:230–233
26.
Zurück zum Zitat Levin Y (2002) Electrostatic correlations: from plasma to biology. Rep Prog Phys 65:1577–1632 Levin Y (2002) Electrostatic correlations: from plasma to biology. Rep Prog Phys 65:1577–1632
27.
Zurück zum Zitat Bohinc K, Zelko J, Sunil Kumar PB, Iglic A, Kralj-Iglic V (2009) Attraction of like-charged surfaces mediated by spheroidal nanoparticles with spatially distributed electric charge: theory and simulation. In: Advances in planar lipid bilayers and liposomes, vol 9. Academic, Burlington Bohinc K, Zelko J, Sunil Kumar PB, Iglic A, Kralj-Iglic V (2009) Attraction of like-charged surfaces mediated by spheroidal nanoparticles with spatially distributed electric charge: theory and simulation. In: Advances in planar lipid bilayers and liposomes, vol 9. Academic, Burlington
28.
Zurück zum Zitat Vlachy V (1999) Ionic effects beyond Poisson-Boltzmann theory. Annu Rev Phys Chem 50:145–165 Vlachy V (1999) Ionic effects beyond Poisson-Boltzmann theory. Annu Rev Phys Chem 50:145–165
31.
Zurück zum Zitat Levin Y (1999) When do like charges attract? Physica A 432:432–439 Levin Y (1999) When do like charges attract? Physica A 432:432–439
33.
Zurück zum Zitat Trizac E, Raimbault JL (1999) Long-range electrostatic interactions between like-charged colloids: steric and confinement effects. Phys Rev 60:6530–6533 Trizac E, Raimbault JL (1999) Long-range electrostatic interactions between like-charged colloids: steric and confinement effects. Phys Rev 60:6530–6533
34.
Zurück zum Zitat Kirkwood JG, Shumaker JB (1952) Forces between protein molecules in solution arising from fluctuations in proton charge and configuration. Proc Natl Acad Sci USA 38:863–871 Kirkwood JG, Shumaker JB (1952) Forces between protein molecules in solution arising from fluctuations in proton charge and configuration. Proc Natl Acad Sci USA 38:863–871
35.
36.
37.
40.
Zurück zum Zitat Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J Chem Phys 51(3):924–933. doi:10.1063/1.1672157 Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J Chem Phys 51(3):924–933. doi:10.​1063/​1.​1672157
41.
Zurück zum Zitat Arenzon J, Stilck J, Levin Y (1999) Simple model for attraction between like-charged polyions. Eur Phys J B 12:79–82 Arenzon J, Stilck J, Levin Y (1999) Simple model for attraction between like-charged polyions. Eur Phys J B 12:79–82
45.
Zurück zum Zitat Fitch RM (1997) Polymer colloids. Academic, New York Fitch RM (1997) Polymer colloids. Academic, New York
46.
Zurück zum Zitat Velegol D, Thwar PK (2001) Analytical model for the effect of surface charge nonuniformity on colloidal interactions. Langmuir 17:7687–7693. doi:10.1021/la010634z Velegol D, Thwar PK (2001) Analytical model for the effect of surface charge nonuniformity on colloidal interactions. Langmuir 17:7687–7693. doi:10.​1021/​la010634z
47.
Zurück zum Zitat Czarnecki J (1985) The effects of surface inhomogeneities on the interactions in colloidal systems and colloid stability. Adv Colloid Interface Sci 24:283–319. doi:10.1016/0001-8686(85)80035-X Czarnecki J (1985) The effects of surface inhomogeneities on the interactions in colloidal systems and colloid stability. Adv Colloid Interface Sci 24:283–319. doi:10.​1016/​0001-8686(85)80035-X
48.
Zurück zum Zitat Grant M, Saville D (1995) Electrostatic interactions between a nonuniformly charged sphere and a charged surface. J Colloid Interface Sci 171(1):35–45. doi:10.1006/jcis.1995.1148 Grant M, Saville D (1995) Electrostatic interactions between a nonuniformly charged sphere and a charged surface. J Colloid Interface Sci 171(1):35–45. doi:10.​1006/​jcis.​1995.​1148
49.
Zurück zum Zitat Stankovich J, Carnie SL (1999) Interactions between two spherical particles with nonuniform surface potentials: the linearized poissonboltzmann theory. J Colloid Interface Sci 216(2):329–347. doi:10.1006/jcis.1999.6326 Stankovich J, Carnie SL (1999) Interactions between two spherical particles with nonuniform surface potentials: the linearized poissonboltzmann theory. J Colloid Interface Sci 216(2):329–347. doi:10.​1006/​jcis.​1999.​6326
50.
Zurück zum Zitat Schowalter WR, Eidsath AB (2001) Brownian flocculation of polymer colloids in the presence of a secondary minimum. Proc Natl Acad Sci USA 98:3644–3651. doi:10.1073/pnas.061028498 Schowalter WR, Eidsath AB (2001) Brownian flocculation of polymer colloids in the presence of a secondary minimum. Proc Natl Acad Sci USA 98:3644–3651. doi:10.​1073/​pnas.​061028498
51.
Zurück zum Zitat Podgornik R, Harries D, DeRouchey J, Strey HH, Parsegian VA (2008) Interactions in macromolecular complexes used as nonviral vectors for gene delivery. In: Gene and cell therapy: therapeutic mechanisms and strategies. CRC, Burlington Podgornik R, Harries D, DeRouchey J, Strey HH, Parsegian VA (2008) Interactions in macromolecular complexes used as nonviral vectors for gene delivery. In: Gene and cell therapy: therapeutic mechanisms and strategies. CRC, Burlington
52.
Zurück zum Zitat Morales V, Anta JA, Lago S (2003) Integral equation prediction of reversible coagulation in charged colloidal suspensions. Langmuir 19:475–482 Morales V, Anta JA, Lago S (2003) Integral equation prediction of reversible coagulation in charged colloidal suspensions. Langmuir 19:475–482
53.
Zurück zum Zitat de Gennes P (1981) Polymer solutions near an interface. 1. Adsorption and depletion layers. Macromolecules 14:1637–1644 de Gennes P (1981) Polymer solutions near an interface. 1. Adsorption and depletion layers. Macromolecules 14:1637–1644
54.
Zurück zum Zitat de Gennes P (1982) Polymer solutions near an interface. 2. Interaction between two plates carrying adsorbed polymer layers. Macromolecules 15:492–500 de Gennes P (1982) Polymer solutions near an interface. 2. Interaction between two plates carrying adsorbed polymer layers. Macromolecules 15:492–500
55.
Zurück zum Zitat Runkana V, Somasundaran P (2007) Mathematical modeling of coagulation and flocculation of colloidal suspensions incorporating the influence of surface forces. In: Colloid stability and application in pharmacy. Colloid and interface science series, vol 3. Wiley-VCH, Weinheim Runkana V, Somasundaran P (2007) Mathematical modeling of coagulation and flocculation of colloidal suspensions incorporating the influence of surface forces. In: Colloid stability and application in pharmacy. Colloid and interface science series, vol 3. Wiley-VCH, Weinheim
56.
Zurück zum Zitat Runkana V, Somasundaran P, Kapur P (2006) A population balance model for flocculation of colloidal suspensions by polymer bridging. Chem Eng Sci 61:182–191 Runkana V, Somasundaran P, Kapur P (2006) A population balance model for flocculation of colloidal suspensions by polymer bridging. Chem Eng Sci 61:182–191
57.
Zurück zum Zitat Somasundaran P, Runkana V (2009) Aggregation of colloids: recent developments in population balance modeling. In: Highlights in colloid science. Wiley-VCH, Weinheim Somasundaran P, Runkana V (2009) Aggregation of colloids: recent developments in population balance modeling. In: Highlights in colloid science. Wiley-VCH, Weinheim
58.
Zurück zum Zitat Grier DG, Behrens SH (2001) Interactions in colloidal suspensions: electrostatics, hydrodynamics and their interplay. In: Electrostatic effects in biophysics and soft matter. Kluwer, Dordrecht Grier DG, Behrens SH (2001) Interactions in colloidal suspensions: electrostatics, hydrodynamics and their interplay. In: Electrostatic effects in biophysics and soft matter. Kluwer, Dordrecht
59.
Zurück zum Zitat Derjaguin B, Muller V (1967) Slow coagulation of hydrophobic colloids. Dokl Akad Nauk SSSR 176:738–741 Derjaguin B, Muller V (1967) Slow coagulation of hydrophobic colloids. Dokl Akad Nauk SSSR 176:738–741
62.
Zurück zum Zitat Honig E, Roebersen G, Wiersema P (1971) Effect of hydrodynamic interaction on the coagulation rate of hydrophobic colloids. J Colloid Interface Sci 36(1):97–109. doi:10.1016/0021-9797(71)90245-1 Honig E, Roebersen G, Wiersema P (1971) Effect of hydrodynamic interaction on the coagulation rate of hydrophobic colloids. J Colloid Interface Sci 36(1):97–109. doi:10.​1016/​0021-9797(71)90245-1
63.
Zurück zum Zitat Kovalchuk N, Starov V (2011) Aggregation in colloidal suspensions: effect of colloidal forces and hydrodynamic interactions. Adv Colloid Interface Sci. doi:10.1016/j.cis.2011.05.009 Kovalchuk N, Starov V (2011) Aggregation in colloidal suspensions: effect of colloidal forces and hydrodynamic interactions. Adv Colloid Interface Sci. doi:10.1016/j.cis.2011.05.009
64.
65.
Zurück zum Zitat Furukawa A, Tanaka H (2010) Key role of hydrodynamic interactions in colloidal gelation. Phys Rev Lett 104:245702. doi:10.1103/PhysRevLett. 104.245702 Furukawa A, Tanaka H (2010) Key role of hydrodynamic interactions in colloidal gelation. Phys Rev Lett 104:245702. doi:10.​1103/​PhysRevLett. 104.245702
66.
Zurück zum Zitat Riese DO, Wegdam GH, Vos WL, Sprik R, Fenistein D, Bongaerts JH, Grübel G (2000) Effective screening of hydrodynamic interactions in charged colloidal suspensions. Phys Rev Lett 85(25):5460–5464 Riese DO, Wegdam GH, Vos WL, Sprik R, Fenistein D, Bongaerts JH, Grübel G (2000) Effective screening of hydrodynamic interactions in charged colloidal suspensions. Phys Rev Lett 85(25):5460–5464
68.
Zurück zum Zitat Muthukumar M (2005) Polyelectrolyte dynamics. In: Rice SA (ed) Advances in chemical physics, vol 131. Wiley, Hoboken Muthukumar M (2005) Polyelectrolyte dynamics. In: Rice SA (ed) Advances in chemical physics, vol 131. Wiley, Hoboken
69.
Zurück zum Zitat Arunachalam V, Marlow WH, Lu JX (1998) Development of a picture of the van der Waals interaction energy between clusters of nanometer-range particles. Phys Rev E 58:3451–3457 Arunachalam V, Marlow WH, Lu JX (1998) Development of a picture of the van der Waals interaction energy between clusters of nanometer-range particles. Phys Rev E 58:3451–3457
72.
Zurück zum Zitat Vicsek T (1992) Fractal growth phenomena. Word Scientific, Singapore Vicsek T (1992) Fractal growth phenomena. Word Scientific, Singapore
73.
Zurück zum Zitat Smoluchowski M (1917) Uber brownsche molekularbewegung unter einwirkung auserer kruafte und deren zusammenhang mit der verallgemeinerten diffusions- gleichung. Ann Phys-Leipzig 48:1103–1112 Smoluchowski M (1917) Uber brownsche molekularbewegung unter einwirkung auserer kruafte und deren zusammenhang mit der verallgemeinerten diffusions- gleichung. Ann Phys-Leipzig 48:1103–1112
74.
Zurück zum Zitat Meakin P (1999) A historical introduction to computer models for fractal aggregates. J Sol–gel Sci Technol 15:97–117 Meakin P (1999) A historical introduction to computer models for fractal aggregates. J Sol–gel Sci Technol 15:97–117
75.
Zurück zum Zitat Witten TA, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47:1400–1403 Witten TA, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47:1400–1403
76.
Zurück zum Zitat Sutherland D (1966) Comment on Vold’s simulation of floc formation. J Colloid Interface Sci 22:300 Sutherland D (1966) Comment on Vold’s simulation of floc formation. J Colloid Interface Sci 22:300
77.
Zurück zum Zitat Sutherland DN (1967) A theoretical model of floc structure. J Colloid Interface Sci 25:373–380 Sutherland DN (1967) A theoretical model of floc structure. J Colloid Interface Sci 25:373–380
78.
Zurück zum Zitat Vold M (1963) Computer simulation of floe formation in a colloidal suspension. J Colloid Sci 18:684–695 Vold M (1963) Computer simulation of floe formation in a colloidal suspension. J Colloid Sci 18:684–695
79.
Zurück zum Zitat Eden M (1961) A two-dimensional growth process. In: Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability, vol 4: Biology and Problems of Health. University of California Press, Berkeley Eden M (1961) A two-dimensional growth process. In: Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability, vol 4: Biology and Problems of Health. University of California Press, Berkeley
80.
Zurück zum Zitat Jullien R, Botet R (1987) Aggregation and fractal aggregation. World Scientific, Singapore Jullien R, Botet R (1987) Aggregation and fractal aggregation. World Scientific, Singapore
82.
Zurück zum Zitat Liu J, Shih WY, Sarikaya M, Aksay IA (1990) Fractal colloidal aggregates with finite interparticle interactions: energy dependence of the fractal dimension. Phys Rev A 41:3206–3213. doi:10.1103/PhysRevA.41.3206 Liu J, Shih WY, Sarikaya M, Aksay IA (1990) Fractal colloidal aggregates with finite interparticle interactions: energy dependence of the fractal dimension. Phys Rev A 41:3206–3213. doi:10.​1103/​PhysRevA.​41.​3206
83.
Zurück zum Zitat Jia Z, Wu H, Morbidelli M (2007) Thermal restructuring of fractal clusters: the case of a strawberry-like core-shell polymer colloid. Langmuir 23:5713–5721. doi:10.1021/la063254s Jia Z, Wu H, Morbidelli M (2007) Thermal restructuring of fractal clusters: the case of a strawberry-like core-shell polymer colloid. Langmuir 23:5713–5721. doi:10.​1021/​la063254s
84.
85.
86.
Zurück zum Zitat Rioux C, Slobodrian RJ (2012) Experimental discrimination of electrostatic and magnetic forces in particle-particle aggregation. Adv Space Res 49(10):1408–1414 Rioux C, Slobodrian RJ (2012) Experimental discrimination of electrostatic and magnetic forces in particle-particle aggregation. Adv Space Res 49(10):1408–1414
87.
Zurück zum Zitat Groenewold J, Kegel WK (2004) Colloidal cluster phases, gelation and nuclear matter. J Phys Condens Matter 16:S4877–S4886 Groenewold J, Kegel WK (2004) Colloidal cluster phases, gelation and nuclear matter. J Phys Condens Matter 16:S4877–S4886
88.
Zurück zum Zitat Sciortino F, Mossa S, Zaccarelli E, Tartaglia P (2004) Equilibrium cluster phases and low-density arrested disordered states: the role of short-range attraction and long-range repulsion. Phys Rev Lett 93:055701 Sciortino F, Mossa S, Zaccarelli E, Tartaglia P (2004) Equilibrium cluster phases and low-density arrested disordered states: the role of short-range attraction and long-range repulsion. Phys Rev Lett 93:055701
89.
Zurück zum Zitat Rayleigh L (1882) On the equilibrium of liquid conducting masses charged with electricity. Philos Mag 14:184–186 Rayleigh L (1882) On the equilibrium of liquid conducting masses charged with electricity. Philos Mag 14:184–186
90.
Zurück zum Zitat Smirnov BM (2006) Cluster processes in gases and plasmas. Distributions, structures, phenomena, kinetics of atomic systems. Wiley-VCH, Weinheim Smirnov BM (2006) Cluster processes in gases and plasmas. Distributions, structures, phenomena, kinetics of atomic systems. Wiley-VCH, Weinheim
91.
Zurück zum Zitat Weizsacker CFV (1935) Zur theorie der kernmassen. Z Phys 96:431–458 Weizsacker CFV (1935) Zur theorie der kernmassen. Z Phys 96:431–458
93.
Zurück zum Zitat Lu PJ, Zaccarelli E, Ciulla F, Schofield AB, Sciortino F, Weitz DA (2008) Gelation of particles with short-range attraction. Nature 453:499–503. doi:10.1038/nature06931 Lu PJ, Zaccarelli E, Ciulla F, Schofield AB, Sciortino F, Weitz DA (2008) Gelation of particles with short-range attraction. Nature 453:499–503. doi:10.​1038/​nature06931
94.
Zurück zum Zitat de Gennes P, Pincus P, Velasco R, Brochard F (1976) Remarks on polyelectrolyte conformation. J Phys-Paris 37(12):1461–1473 de Gennes P, Pincus P, Velasco R, Brochard F (1976) Remarks on polyelectrolyte conformation. J Phys-Paris 37(12):1461–1473
95.
Zurück zum Zitat Brender C, Danino M, Shatz S (1999) Fractals in Monte Carlo simulations of a short polyelectrolyte. J Phys A Math Gen 32(2):235 Brender C, Danino M, Shatz S (1999) Fractals in Monte Carlo simulations of a short polyelectrolyte. J Phys A Math Gen 32(2):235
96.
Zurück zum Zitat Fernandez-Toledano JC, Moncho-Jorda A, Martinez-Lopez F, Gonzalez AE, Hidalgo-Alvarez R (2007) Two-dimensional colloidal aggregation mediated by the range of repulsive interactions. Phys Rev E 75:041408. doi:10.1103/PhysRevE.75.041408 Fernandez-Toledano JC, Moncho-Jorda A, Martinez-Lopez F, Gonzalez AE, Hidalgo-Alvarez R (2007) Two-dimensional colloidal aggregation mediated by the range of repulsive interactions. Phys Rev E 75:041408. doi:10.​1103/​PhysRevE.​75.​041408
97.
Zurück zum Zitat Mossa S, Sciortino F, Tartaglia P, Zaccarelli E (2004) Ground-state clusters for short-range attractive and long-range repulsive potentials. Langmuir 20(24):10756–10763. doi:10.1021/la048554t Mossa S, Sciortino F, Tartaglia P, Zaccarelli E (2004) Ground-state clusters for short-range attractive and long-range repulsive potentials. Langmuir 20(24):10756–10763. doi:10.​1021/​la048554t
98.
Zurück zum Zitat Sciortino F, Tartaglia P, Zaccarelli E (2005) One-dimensional cluster growth and branching gels in colloidal systems with short-range depletion attraction and screened electrostatic repulsion. J Phys Chem B 109(46):21942–21953. doi:10.1021/jp052683g Sciortino F, Tartaglia P, Zaccarelli E (2005) One-dimensional cluster growth and branching gels in colloidal systems with short-range depletion attraction and screened electrostatic repulsion. J Phys Chem B 109(46):21942–21953. doi:10.​1021/​jp052683g
99.
Zurück zum Zitat Chakrabarty RK, Moosmuller H, Garro MA, Arnott WP, Slowik JG, Cross ES, Jeong-Ho Han PD, Onasch TB, Worsnop DR (2008) Morphology based particle segregation by electrostatic charge. J Aerosol Sci 39(9):785–792 Chakrabarty RK, Moosmuller H, Garro MA, Arnott WP, Slowik JG, Cross ES, Jeong-Ho Han PD, Onasch TB, Worsnop DR (2008) Morphology based particle segregation by electrostatic charge. J Aerosol Sci 39(9):785–792
100.
Zurück zum Zitat Block A, van Blah W, Schellnhuber HJ (1991) Aggregation by attractive particle-cluster interaction. J Phys A Math Gen 24:L1037–L1044 Block A, van Blah W, Schellnhuber HJ (1991) Aggregation by attractive particle-cluster interaction. J Phys A Math Gen 24:L1037–L1044
101.
102.
Zurück zum Zitat Meakin P (1990) The effects of attractive and repulsive interactions on three-dimensional reaction-limited aggregation. J Colloid Interface Sci 134(1):235–244. doi:10.1016/0021-9797(90)90271-O Meakin P (1990) The effects of attractive and repulsive interactions on three-dimensional reaction-limited aggregation. J Colloid Interface Sci 134(1):235–244. doi:10.​1016/​0021-9797(90)90271-O
103.
Zurück zum Zitat Meakin P, Muthukumar M (1989) The effects of attractive and repulsive interaction on two-dimensional reaction-limited aggregation. J Chem Phys 91(5):3212–3221. doi:10.1063/1.456942 Meakin P, Muthukumar M (1989) The effects of attractive and repulsive interaction on two-dimensional reaction-limited aggregation. J Chem Phys 91(5):3212–3221. doi:10.​1063/​1.​456942
104.
Zurück zum Zitat Indiveri G, Levi A, Gliozzi A, Scalas E (1996) Cluster growth with long-range interactions. Thin Solid Films 284–285:106–109 Indiveri G, Levi A, Gliozzi A, Scalas E (1996) Cluster growth with long-range interactions. Thin Solid Films 284–285:106–109
105.
Zurück zum Zitat Ivanenko Y, Lebovka N, Vygornitskii N (1999) Eden growth model for aggregation of charged particles. Eur Phys J B 11:469–480 Ivanenko Y, Lebovka N, Vygornitskii N (1999) Eden growth model for aggregation of charged particles. Eur Phys J B 11:469–480
106.
Zurück zum Zitat Lebovka NI, Ivanenko YV, Vygornitskii NV (1998) Deterministic eden model of charged-particles aggregation. Europhys Lett 41(1):19 Lebovka NI, Ivanenko YV, Vygornitskii NV (1998) Deterministic eden model of charged-particles aggregation. Europhys Lett 41(1):19
107.
Zurück zum Zitat Pinchuk AO, Kalsin AM, Kowalczyk B, Schatz GC, Grzybowski BA (2007) Modeling of electrodynamic interactions between metal nanoparticles aggregated by electrostatic interactions into closely-packed clusters. J Phys Chem C 111(32):11816–11822. doi:10.1021/jp073403v Pinchuk AO, Kalsin AM, Kowalczyk B, Schatz GC, Grzybowski BA (2007) Modeling of electrodynamic interactions between metal nanoparticles aggregated by electrostatic interactions into closely-packed clusters. J Phys Chem C 111(32):11816–11822. doi:10.​1021/​jp073403v
109.
Zurück zum Zitat Harnau L, Hansen JP (2002) Colloid aggregation induced by oppositely charged polyions. J Chem Phys 116(20):9051–9057. doi:10.1063/1.1471550 Harnau L, Hansen JP (2002) Colloid aggregation induced by oppositely charged polyions. J Chem Phys 116(20):9051–9057. doi:10.​1063/​1.​1471550
110.
Zurück zum Zitat Puertas A, Fernandez-Barbero A, De las Nieves F (2000) Aggregation between oppositely charged colloidal particles. In: Buckin V (ed) Trends in colloid and interface science XIV. Progress in colloid and polymer science, vol 115. Springer, Berlin, pp 55–58 Puertas A, Fernandez-Barbero A, De las Nieves F (2000) Aggregation between oppositely charged colloidal particles. In: Buckin V (ed) Trends in colloid and interface science XIV. Progress in colloid and polymer science, vol 115. Springer, Berlin, pp 55–58
112.
Zurück zum Zitat Kim AY, Hauch KD, Berg JC, Martin JE, Anderson RA (2003) Linear chains and chain-like fractals from electrostatic heteroaggregation. J Colloid Interface Sci 260(1):149–159. doi:10.1016/S0021-9797(03)00033-X Kim AY, Hauch KD, Berg JC, Martin JE, Anderson RA (2003) Linear chains and chain-like fractals from electrostatic heteroaggregation. J Colloid Interface Sci 260(1):149–159. doi:10.​1016/​S0021-9797(03)00033-X
113.
Zurück zum Zitat Cerbelaud M, Videcoq A, Abelard P, Pagnoux C, Rossignol F, Ferrando R (2008) Heteroaggregation between Al2O3 submicrometer particles and SiO2 nanoparticles: experiment and simulation. Langmuir 24(7):3001–3008. doi:10.1021/la702104u Cerbelaud M, Videcoq A, Abelard P, Pagnoux C, Rossignol F, Ferrando R (2008) Heteroaggregation between Al2O3 submicrometer particles and SiO2 nanoparticles: experiment and simulation. Langmuir 24(7):3001–3008. doi:10.​1021/​la702104u
114.
Zurück zum Zitat Cerbelaud M, Videcoq A, Abelard P, Ferrando R (2009) Simulation of the heteroagglomeration between highly size-asymmetric ceramic particles. J Colloid Interface Sci 332(2):360–365. doi:10.1016/j.jcis.2008.11.063 Cerbelaud M, Videcoq A, Abelard P, Ferrando R (2009) Simulation of the heteroagglomeration between highly size-asymmetric ceramic particles. J Colloid Interface Sci 332(2):360–365. doi:10.​1016/​j.​jcis.​2008.​11.​063
115.
Zurück zum Zitat Piechowiak MA, Videcoq A, Ferrando R, Bochicchio D, Pagnoux C, Rossignol F (2012) Aggregation kinetics and gel formation in modestly concentrated suspensions of oppositely charged model ceramic colloids: a numerical study. Phys Chem Chem Phys 14:1431–1439. doi:10.1039/C1CP22980J Piechowiak MA, Videcoq A, Ferrando R, Bochicchio D, Pagnoux C, Rossignol F (2012) Aggregation kinetics and gel formation in modestly concentrated suspensions of oppositely charged model ceramic colloids: a numerical study. Phys Chem Chem Phys 14:1431–1439. doi:10.​1039/​C1CP22980J
116.
Zurück zum Zitat Castelnovo M, Sens P, Joanny JF (2000) Charge distribution on annealed polyelectrolytes. Eur Phys J E 1:115–125 Castelnovo M, Sens P, Joanny JF (2000) Charge distribution on annealed polyelectrolytes. Eur Phys J E 1:115–125
117.
Zurück zum Zitat Coslovich D, Hansen J, Kahl G (2011) Ultrasoft primitive model of polyionic solutions: structure, aggregation, and dynamics. J Chem Phys 134(24):244514 (15 pages), www.scopus.com Coslovich D, Hansen J, Kahl G (2011) Ultrasoft primitive model of polyionic solutions: structure, aggregation, and dynamics. J Chem Phys 134(24):244514 (15 pages), www.​scopus.​com
118.
Zurück zum Zitat Coslovich D, Hansen JP, Kahl G (2011) Clustering, conductor-insulator transition and phase separation of an ultrasoft model of electrolytes. Soft Matter 7:1690–1693. doi:10.1039/C0SM01090A Coslovich D, Hansen JP, Kahl G (2011) Clustering, conductor-insulator transition and phase separation of an ultrasoft model of electrolytes. Soft Matter 7:1690–1693. doi:10.​1039/​C0SM01090A
119.
Zurück zum Zitat Lee J, Popov YO, Fredrickson GH (2008) Complex coacervation: a field theoretic simulation study of polyelectrolyte complexation. J Chem Phys 128(22):224908. doi:10.1063/1.2936834 Lee J, Popov YO, Fredrickson GH (2008) Complex coacervation: a field theoretic simulation study of polyelectrolyte complexation. J Chem Phys 128(22):224908. doi:10.​1063/​1.​2936834
120.
Zurück zum Zitat Rydén J, Ullner M, Linse P (2005) Monte Carlo simulations of oppositely charged macroions in solution. J Chem Phys 123(3):034909. doi:10.1063/1.1949191 Rydén J, Ullner M, Linse P (2005) Monte Carlo simulations of oppositely charged macroions in solution. J Chem Phys 123(3):034909. doi:10.​1063/​1.​1949191
121.
Zurück zum Zitat Zito T, Seidela C (2002) Equilibrium charge distribution on annealed polyelectrolytes. Eur Phys J E 8:339–346 Zito T, Seidela C (2002) Equilibrium charge distribution on annealed polyelectrolytes. Eur Phys J E 8:339–346
122.
Zurück zum Zitat Buchhammer HM, Mende M, Oelmann M (2003) Formation of mono-sized polyelectrolyte complex dispersions: effects of polymer structure, concentration and mixing conditions. Colloids Surf A 218(1):151–159. doi:10.1016/S0927-7757(02)00582-4 Buchhammer HM, Mende M, Oelmann M (2003) Formation of mono-sized polyelectrolyte complex dispersions: effects of polymer structure, concentration and mixing conditions. Colloids Surf A 218(1):151–159. doi:10.​1016/​S0927-7757(02)00582-4
123.
Zurück zum Zitat Buchhammer HM, Mende M, Oelmann M (2004) Preparation of monodisperse polyelectrolyte complex nanoparticles in dilute aqueous solution. In: Tauer K (ed) Aqueous polymer dispersions. Progress in colloid and polymer science, vol 124. Springer, Berlin, pp 98–102 Buchhammer HM, Mende M, Oelmann M (2004) Preparation of monodisperse polyelectrolyte complex nanoparticles in dilute aqueous solution. In: Tauer K (ed) Aqueous polymer dispersions. Progress in colloid and polymer science, vol 124. Springer, Berlin, pp 98–102
124.
125.
Zurück zum Zitat Oskolkov NN, Potemkin II (2007) Complexation in asymmetric solutions of oppositely charged polyelectrolytes:phase diagram. Macromolecules 40(23):8423–8429. doi:10.1021/ma0709304 Oskolkov NN, Potemkin II (2007) Complexation in asymmetric solutions of oppositely charged polyelectrolytes:phase diagram. Macromolecules 40(23):8423–8429. doi:10.​1021/​ma0709304
126.
Zurück zum Zitat Popov YO, Lee J, Fredrickson G (2007) Field-theoretic simulations of polyelectrolyte complexation. J Polym Sci Pol Phys 45:3223–3230 Popov YO, Lee J, Fredrickson G (2007) Field-theoretic simulations of polyelectrolyte complexation. J Polym Sci Pol Phys 45:3223–3230
127.
Zurück zum Zitat Dalakoglou G, Karatasos K, Lyulin S, Lyulin A (2008) Brownian dynamics simulations of complexes of hyperbranched polymers with linear polyelectrolytes: effects of the strength of electrostatic interactions on static properties. Mat Sci Eng B-Solid 152(1–3):114–118. doi:10.1016/j.mseb.2008.06.012 Dalakoglou G, Karatasos K, Lyulin S, Lyulin A (2008) Brownian dynamics simulations of complexes of hyperbranched polymers with linear polyelectrolytes: effects of the strength of electrostatic interactions on static properties. Mat Sci Eng B-Solid 152(1–3):114–118. doi:10.​1016/​j.​mseb.​2008.​06.​012
128.
Zurück zum Zitat Skepo M, Linse P (2003) Complexation, phase separation, and redissolution in polyelectrolytemacroion solutions. Macromolecules 36:508–519 Skepo M, Linse P (2003) Complexation, phase separation, and redissolution in polyelectrolytemacroion solutions. Macromolecules 36:508–519
130.
Zurück zum Zitat Ulrich S, Seijo M, Carnal F, Stoll S (2011) Formation of complexes between nanoparticles and weak polyampholyte chains. Monte Carlo simulations. Macromolecules 44:1661–1670 Ulrich S, Seijo M, Carnal F, Stoll S (2011) Formation of complexes between nanoparticles and weak polyampholyte chains. Monte Carlo simulations. Macromolecules 44:1661–1670
131.
132.
Zurück zum Zitat Jeon J, Dobrynin AV (2005) Molecular dynamics simulations of polyampholyte-polyelectrolyte complexes in solutions. Macromolecules 38:5300–5312 Jeon J, Dobrynin AV (2005) Molecular dynamics simulations of polyampholyte-polyelectrolyte complexes in solutions. Macromolecules 38:5300–5312
133.
Zurück zum Zitat Xu Y, Feng J, Liu H, Hu Y, Jiang J (2007) Molecular dynamics simulation of polyelectrolyte with oppositely charged monomeric and dimeric surfactants. Mol Simul 33(3):261–268. doi:10.1080/08927020601158679 Xu Y, Feng J, Liu H, Hu Y, Jiang J (2007) Molecular dynamics simulation of polyelectrolyte with oppositely charged monomeric and dimeric surfactants. Mol Simul 33(3):261–268. doi:10.​1080/​0892702060115867​9
134.
Zurück zum Zitat Jullien R, Botet R, Mors PM (1987) Computer simulations of cluster-cluster aggregation. Faraday Discuss Chem Soc 83:125–137. doi:10.1039/DC9878300125 Jullien R, Botet R, Mors PM (1987) Computer simulations of cluster-cluster aggregation. Faraday Discuss Chem Soc 83:125–137. doi:10.​1039/​DC9878300125
135.
Zurück zum Zitat Mors PM, Botet R, Jullien R (1987) Cluster-cluster aggregation with dipolar interactions. J Phys A Math Gen 20:L975 Mors PM, Botet R, Jullien R (1987) Cluster-cluster aggregation with dipolar interactions. J Phys A Math Gen 20:L975
136.
Zurück zum Zitat Pastor-Satorras R, Rubi JM (1995) Particle-cluster aggregation with dipolar interactions. Phys Rev E 51:5994–6003 Pastor-Satorras R, Rubi JM (1995) Particle-cluster aggregation with dipolar interactions. Phys Rev E 51:5994–6003
137.
Zurück zum Zitat Pastor-Satorras R, Rubi R (1998) Fractal properties of cluster of colloidal magnetic particles. Prog Colloid Polym Sci 110:29–33 Pastor-Satorras R, Rubi R (1998) Fractal properties of cluster of colloidal magnetic particles. Prog Colloid Polym Sci 110:29–33
138.
Zurück zum Zitat Pastor-Satorras R, Rubi J (2000) Dipolar interactions induced order in assemblies of magnetic particles. J Magn Magn Mater 221:124–131 Pastor-Satorras R, Rubi J (2000) Dipolar interactions induced order in assemblies of magnetic particles. J Magn Magn Mater 221:124–131
139.
Zurück zum Zitat Family F (1985) Kinetics of aggregation and gelation. Elsevier, Amsterdam Family F (1985) Kinetics of aggregation and gelation. Elsevier, Amsterdam
140.
Zurück zum Zitat Meakin P (1992) Aggregation kinetics. Phys Scripta 46(4):295 Meakin P (1992) Aggregation kinetics. Phys Scripta 46(4):295
141.
Zurück zum Zitat Meakin P (1998) Fractals, scaling and growth far from equilibrium. Cambridge University Press, Cambridge Meakin P (1998) Fractals, scaling and growth far from equilibrium. Cambridge University Press, Cambridge
142.
Zurück zum Zitat Fuchs N (1934) Ueber die stabilitat und aufladung der aerosole. Z Phys 89:736–743 Fuchs N (1934) Ueber die stabilitat und aufladung der aerosole. Z Phys 89:736–743
143.
Zurück zum Zitat Reerink H, Overbeek JTG (1954) The rate of coagulation as a measure of the stability of silver iodide sols. Faraday Discuss Chem Soc 18:74–84 Reerink H, Overbeek JTG (1954) The rate of coagulation as a measure of the stability of silver iodide sols. Faraday Discuss Chem Soc 18:74–84
144.
Zurück zum Zitat Leyvraz F (2003) Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Phys Rep 383:95–212 Leyvraz F (2003) Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Phys Rep 383:95–212
145.
Zurück zum Zitat McLeod JB (1962) On an infinite set of non-linear differential equations. Q J Math 13:119–128 McLeod JB (1962) On an infinite set of non-linear differential equations. Q J Math 13:119–128
146.
Zurück zum Zitat Melzak ZA (1953) The effects of coalescence in certain collision processes. Q J Mech Appl Math 11:231–234 Melzak ZA (1953) The effects of coalescence in certain collision processes. Q J Mech Appl Math 11:231–234
148.
Zurück zum Zitat Zift RM, McGrady ED, Meakin P (1985) On the validity of Smoluchowski’s equation for cluster-cluster aggregation kinetics. J Chem Phys 82:5269–5274 Zift RM, McGrady ED, Meakin P (1985) On the validity of Smoluchowski’s equation for cluster-cluster aggregation kinetics. J Chem Phys 82:5269–5274
149.
Zurück zum Zitat Fernandez-Barbero A, Cabrerizo-Vilchez M, Martinez-Garcia R, Hidalgo-Alvarez R (1996) Effect of the particle surface charge density on the colloidal aggregation mechanism. Phys Rev E 53:4981–4989. doi:10.1103/PhysRevE.53.4981 Fernandez-Barbero A, Cabrerizo-Vilchez M, Martinez-Garcia R, Hidalgo-Alvarez R (1996) Effect of the particle surface charge density on the colloidal aggregation mechanism. Phys Rev E 53:4981–4989. doi:10.​1103/​PhysRevE.​53.​4981
150.
Zurück zum Zitat Asnaghi D, Carpineti M, Giglio M, Sozzi M (1992) Coagulation kinetics and aggregate morphology in the intermediate regimes between diffusion-limited and reaction-limited cluster aggregation. Phys Rev A 45:1018–1023. doi:10.1103/PhysRevA.45.1018 Asnaghi D, Carpineti M, Giglio M, Sozzi M (1992) Coagulation kinetics and aggregate morphology in the intermediate regimes between diffusion-limited and reaction-limited cluster aggregation. Phys Rev A 45:1018–1023. doi:10.​1103/​PhysRevA.​45.​1018
151.
Zurück zum Zitat Lattuada M, Sandkuhler P, Wu H, Sefcik J, Morbidelli M (2003) Aggregation kinetics of polymer colloids in reaction limited regime: experiments and simulations. Adv Colloid Interface Sci 103:33–56 Lattuada M, Sandkuhler P, Wu H, Sefcik J, Morbidelli M (2003) Aggregation kinetics of polymer colloids in reaction limited regime: experiments and simulations. Adv Colloid Interface Sci 103:33–56
152.
Zurück zum Zitat Odriozola G, Moncho-Jorda A, Schmitt A, Callejas-Fernandez J, Martinez-Garcia R, Hidalgo-Alvarez R (2001) A probabilistic aggregation kernel for the computer-simulated transition from DLCA to RLCA. Europhys Lett 53:797803 Odriozola G, Moncho-Jorda A, Schmitt A, Callejas-Fernandez J, Martinez-Garcia R, Hidalgo-Alvarez R (2001) A probabilistic aggregation kernel for the computer-simulated transition from DLCA to RLCA. Europhys Lett 53:797803
153.
Zurück zum Zitat Runkana V, Somasundaran P, Kapur PC (2005) Reaction-limited aggregation in presence of short-range structural forces. AICHE J 51:1233–1245 Runkana V, Somasundaran P, Kapur PC (2005) Reaction-limited aggregation in presence of short-range structural forces. AICHE J 51:1233–1245
154.
Zurück zum Zitat Starchenko V, Muller M, Lebovka N (2008) Growth of polyelectrolyte complex nanoparticles: computer simulations and experiments. J Phys Chem C 112:8863–8869 Starchenko V, Muller M, Lebovka N (2008) Growth of polyelectrolyte complex nanoparticles: computer simulations and experiments. J Phys Chem C 112:8863–8869
155.
Zurück zum Zitat Bianchi E, Blaak R, Likos CN (2011) Patchy colloids: state of the art and perspectives. Phys Chem Chem Phys 13:6397–6410. doi:10.1039/C0CP02296A Bianchi E, Blaak R, Likos CN (2011) Patchy colloids: state of the art and perspectives. Phys Chem Chem Phys 13:6397–6410. doi:10.​1039/​C0CP02296A
Metadaten
Titel
Aggregation of Charged Colloidal Particles
verfasst von
Nikolai I. Lebovka
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/12_2012_171

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.