Skip to main content

2022 | OriginalPaper | Buchkapitel

Agile Running Control for Bipedal Robot Based on 3D-SLIP Model Regulation in Task-Space

verfasst von : Shengjun Wang, Zehuan Li, Haibo Gao, Kaizheng Shan, Jun Li, Haitao Yu

Erschienen in: Intelligent Robotics and Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To achieve agile running of a biped robot, dynamic stability, joint coordination, and real-time ability are required. In this paper, a task-space-based controller framework is constructed with a reduced-order 3D-SLIP model. On the top layer, a 3D-SLIP model based planner is employed for center-of-mass trajectory planning. The planner built with optimization for table divided apex state, and a neural network is used to fit the optimized table for real-time planning. On the bottom layer, a task-space-based controller with full-body dynamics is utilized, which solves the quadratic programming for the optimized joint torque in real-time. A 12-DOF biped robot model with a point-foot is used for simulation verification. The simulation result show that stable running and single-cycle apex state change running can achieved with the framework.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kuo, A.D., Donelan, J.M., Ruina, A.: Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exercise Sport Sci. Rev. 33(2), 88–97 (2005) Kuo, A.D., Donelan, J.M., Ruina, A.: Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exercise Sport Sci. Rev. 33(2), 88–97 (2005)
2.
Zurück zum Zitat Kajita, S., Tani, K.: Study of dynamic biped locomotion on rugged terrain-derivation and application of the linear inverted pendulum mode. In: Proceedings. 1991 IEEE International Conference on Robotics and Automation, pp. 1405–1406. IEEE Computer Society (1991) Kajita, S., Tani, K.: Study of dynamic biped locomotion on rugged terrain-derivation and application of the linear inverted pendulum mode. In: Proceedings. 1991 IEEE International Conference on Robotics and Automation, pp. 1405–1406. IEEE Computer Society (1991)
3.
Zurück zum Zitat Kajita, S., et al.: Biped walking stabilization based on linear inverted pendulum tracking. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4489–4496. IEEE (2010) Kajita, S., et al.: Biped walking stabilization based on linear inverted pendulum tracking. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4489–4496. IEEE (2010)
4.
Zurück zum Zitat Pratt, J., Carff, J., Drakunov, S., Goswami, A.: Capture point: a step toward humanoid push recovery. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots, pp. 200–207. IEEE (2006) Pratt, J., Carff, J., Drakunov, S., Goswami, A.: Capture point: a step toward humanoid push recovery. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots, pp. 200–207. IEEE (2006)
5.
Zurück zum Zitat Krause, M., Englsberger, J., Wieber, P.-B., Ott, C.: Stabilization of the capture point dynamics for bipedal walking based on model predictive control. IFAC Proc. Vol. 45(22), 165–171 (2012)CrossRef Krause, M., Englsberger, J., Wieber, P.-B., Ott, C.: Stabilization of the capture point dynamics for bipedal walking based on model predictive control. IFAC Proc. Vol. 45(22), 165–171 (2012)CrossRef
6.
Zurück zum Zitat Morisawa, M., Kajita, S., Kanehiro, F., Kaneko, K., Miura, K., Yokoi, K.: Balance control based on capture point error compensation for biped walking on uneven terrain. In: 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pp. 734–740. IEEE (2012) Morisawa, M., Kajita, S., Kanehiro, F., Kaneko, K., Miura, K., Yokoi, K.: Balance control based on capture point error compensation for biped walking on uneven terrain. In: 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pp. 734–740. IEEE (2012)
7.
Zurück zum Zitat Raibert, M.H., Benjamin Brown Jr, H., Chepponis, M., Koechling, J., Hodgins, J.K.: Dynamically stable legged locomotion. Technical report, Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab (1989) Raibert, M.H., Benjamin Brown Jr, H., Chepponis, M., Koechling, J., Hodgins, J.K.: Dynamically stable legged locomotion. Technical report, Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab (1989)
8.
Zurück zum Zitat Geyer, H., Seyfarth, A., Blickhan, R.: Spring-mass running: simple approximate solution and application to gait stability. J. Theor. Biol. 232(3), 315–328 (2005)MathSciNetCrossRef Geyer, H., Seyfarth, A., Blickhan, R.: Spring-mass running: simple approximate solution and application to gait stability. J. Theor. Biol. 232(3), 315–328 (2005)MathSciNetCrossRef
9.
Zurück zum Zitat Albert, W., Geyer, H.: The 3-d spring-mass model reveals a time-based deadbeat control for highly robust running and steering in uncertain environments. IEEE Trans. Rob. 29(5), 1114–1124 (2013)CrossRef Albert, W., Geyer, H.: The 3-d spring-mass model reveals a time-based deadbeat control for highly robust running and steering in uncertain environments. IEEE Trans. Rob. 29(5), 1114–1124 (2013)CrossRef
10.
Zurück zum Zitat Xin, S., Delhaisse, B., You, Y., Zhou, C., Shahbazi, M., Tsagarakis, N.: Neural-network-controlled spring mass template for humanoid running. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1725–1731. IEEE (2018) Xin, S., Delhaisse, B., You, Y., Zhou, C., Shahbazi, M., Tsagarakis, N.: Neural-network-controlled spring mass template for humanoid running. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1725–1731. IEEE (2018)
11.
Zurück zum Zitat Wensing, P.M., Orin, D.E.: Generation of dynamic humanoid behaviors through task-space control with conic optimization. In: 2013 IEEE International Conference on Robotics and Automation, pp. 3103–3109. IEEE (2013) Wensing, P.M., Orin, D.E.: Generation of dynamic humanoid behaviors through task-space control with conic optimization. In: 2013 IEEE International Conference on Robotics and Automation, pp. 3103–3109. IEEE (2013)
12.
Zurück zum Zitat Wiedebach, G., et al.: Walking on partial footholds including line contacts with the humanoid robot atlas. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages 1312–1319. IEEE (2016) Wiedebach, G., et al.: Walking on partial footholds including line contacts with the humanoid robot atlas. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages 1312–1319. IEEE (2016)
13.
Zurück zum Zitat Baerlocher, P., Boulic, R.: Task-priority formulations for the kinematic control of highly redundant articulated structures. In: Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No. 98CH36190), vol. 1, pp. 323–329. IEEE, 1998 Baerlocher, P., Boulic, R.: Task-priority formulations for the kinematic control of highly redundant articulated structures. In: Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No. 98CH36190), vol. 1, pp. 323–329. IEEE, 1998
14.
Zurück zum Zitat Kajita, S., e al.: Resolved momentum control: Humanoid motion planning based on the linear and angular momentum. In Proceedings 2003 ieee/rsj International Conference on Intelligent Robots and Systems (IROS 2003) (cat. no. 03ch37453), vol. 2, pp. 1644–1650. IEEE (2003) Kajita, S., e al.: Resolved momentum control: Humanoid motion planning based on the linear and angular momentum. In Proceedings 2003 ieee/rsj International Conference on Intelligent Robots and Systems (IROS 2003) (cat. no. 03ch37453), vol. 2, pp. 1644–1650. IEEE (2003)
15.
Zurück zum Zitat Kuindersma, S., Permenter, F., Tedrake, R.: An efficiently solvable quadratic program for stabilizing dynamic locomotion. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2589–2594. IEEE (2014) Kuindersma, S., Permenter, F., Tedrake, R.: An efficiently solvable quadratic program for stabilizing dynamic locomotion. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2589–2594. IEEE (2014)
16.
Zurück zum Zitat Koolen, T., Deits, R.: Julia for robotics: simulation and real-time control in a high-level programming language. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 604–611. IEEE (2019) Koolen, T., Deits, R.: Julia for robotics: simulation and real-time control in a high-level programming language. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 604–611. IEEE (2019)
17.
Zurück zum Zitat Featherstone, R.: Rigid body dynamics algorithms. Springer (2014) Featherstone, R.: Rigid body dynamics algorithms. Springer (2014)
Metadaten
Titel
Agile Running Control for Bipedal Robot Based on 3D-SLIP Model Regulation in Task-Space
verfasst von
Shengjun Wang
Zehuan Li
Haibo Gao
Kaizheng Shan
Jun Li
Haitao Yu
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-031-13844-7_48