Skip to main content

2020 | OriginalPaper | Buchkapitel

Agricultural Wastes as Feedstock for Thermo-Chemical Conversion: Products Distribution and Characterization

verfasst von : Samarjit Gogoi, Nilutpal Bhuyan, Debashis Sut, Rumi Narzari, Lina Gogoi, Rupam Kataki

Erschienen in: Energy Recovery Processes from Wastes

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Pyrolysis is one of the most promising thermal conversion technologies for biomass conversion. In pyrolysis, biomass is decomposed into solid char, bio-oil, and gas, that satisfies different forms of energy requirement. Further, Pyrolysis also offers the unique advantage of utilizing diverse lingo-cellulosic biomasses including agricultural wastes as feedstocks. Globally, India is the second largest sesame seed producing country. So, a vast amount of sesame stalk is generated as an agricultural waste in India. In this work, slow pyrolysis of sesame stalk was done at four different temperatures in the range of 350–650 °C at a heating rate of 40 °C/min in a laboratory-scale fixed bed reactor. The variation of pyrolysis products yield with temperature was observed, and all the products were quantified. The liquid and solid products of pyrolysis i.e. bio-oil and biochar respectively, were characterized by elemental analyser (CHN analyser), GC-MS, SEM and FTIR. From the study it was observed that pyrolysis temperature had significantly affected the yield of pyrolysis products. Biochar yield decreased while volatile gas yield increased with increase in temperature. The bio-oil yield was maximum at 550 °C and it was found that the higher heating value (HHV) of the oil was 26.89 MJ/kg. The carbon content of the biochar also increased with the temperature and hence the HHV. The pH of the biochar increased with the temperature and basic in nature which is suitable for soil amendment in north-eastern region. The study established that the sesame stalk was a suitable raw-material for pyrolytic valorization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Quan, C., Gao, N., & Song, Q. (2016). Pyrolysis of biomass components in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and product characterization. Journal of Analytical and Applied Pyrolysis, 121, 84–92.CrossRef Quan, C., Gao, N., & Song, Q. (2016). Pyrolysis of biomass components in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and product characterization. Journal of Analytical and Applied Pyrolysis, 121, 84–92.CrossRef
2.
Zurück zum Zitat Jenkins, B. M., Baxter, L. L., Miles, T. R. M., Jr., & Miles, T. R. M. (1998). Combustion properties of biomass. Fuel processing technology, 54, 17–46.CrossRef Jenkins, B. M., Baxter, L. L., Miles, T. R. M., Jr., & Miles, T. R. M. (1998). Combustion properties of biomass. Fuel processing technology, 54, 17–46.CrossRef
3.
Zurück zum Zitat Saikia, R., Baruah, B., Kalita, D., Pant, K. K., Gogoi, N., & Kataki, R. (2018). Pyrolysis and kinetic analyses of a Perennial Grass (Saccharum ravannae L.) from north-east India: Optimization through response surface methodology and product characterization. Bioresource Technology, 253, 304–314.CrossRef Saikia, R., Baruah, B., Kalita, D., Pant, K. K., Gogoi, N., & Kataki, R. (2018). Pyrolysis and kinetic analyses of a Perennial Grass (Saccharum ravannae L.) from north-east India: Optimization through response surface methodology and product characterization. Bioresource Technology, 253, 304–314.CrossRef
4.
Zurück zum Zitat Jiang, X., & Ellis, N. (2010). Upgrading bio-oil through emulsification with biodiesel: Thermal stability. Energy & Fuels, 24, 2699–2706.CrossRef Jiang, X., & Ellis, N. (2010). Upgrading bio-oil through emulsification with biodiesel: Thermal stability. Energy & Fuels, 24, 2699–2706.CrossRef
5.
Zurück zum Zitat Hawash, S. I., Farah, J. Y., & El-Diwani, G. (2017). Pyrolysis of agriculture wastes for bio-oil and char production. Journal of Analytical and Applied Pyrolysis, 124, 369–372.CrossRef Hawash, S. I., Farah, J. Y., & El-Diwani, G. (2017). Pyrolysis of agriculture wastes for bio-oil and char production. Journal of Analytical and Applied Pyrolysis, 124, 369–372.CrossRef
6.
Zurück zum Zitat Kumar, P. (2017). Saw dust pyrolysis: Effect of temperature and catalysts. Fuel, 199, 339–345.CrossRef Kumar, P. (2017). Saw dust pyrolysis: Effect of temperature and catalysts. Fuel, 199, 339–345.CrossRef
7.
Zurück zum Zitat Demirbas, A., Pehlivan, E., & Altun, T. (2006). Potential evolution of Turkish agricultural residues as bio-gas, bio-char and bio-oil sources. International Journal of Hydrogen Energy, 31, 613–620.CrossRef Demirbas, A., Pehlivan, E., & Altun, T. (2006). Potential evolution of Turkish agricultural residues as bio-gas, bio-char and bio-oil sources. International Journal of Hydrogen Energy, 31, 613–620.CrossRef
8.
Zurück zum Zitat Santos, R. M., Santos, A. O., Sussuchi, E. M., Nascimento, J. S., Lima, Á. S., & Freitas, L. S. (2015). Pyrolysis of mangaba seed: Production and characterization of bio-oil. Bioresource Technology, 196, 43–48.CrossRef Santos, R. M., Santos, A. O., Sussuchi, E. M., Nascimento, J. S., Lima, Á. S., & Freitas, L. S. (2015). Pyrolysis of mangaba seed: Production and characterization of bio-oil. Bioresource Technology, 196, 43–48.CrossRef
9.
Zurück zum Zitat Karuppaiah, V., & Nadarajan, L. (2013). Host plant resistance against sesame leaf webber and capsule borer Antigastracatalaunalis Duponchel (Pyraustidae: Lepidoptera). African Journal of Agricultural Research, 8(37), 4674–4680.CrossRef Karuppaiah, V., & Nadarajan, L. (2013). Host plant resistance against sesame leaf webber and capsule borer Antigastracatalaunalis Duponchel (Pyraustidae: Lepidoptera). African Journal of Agricultural Research, 8(37), 4674–4680.CrossRef
10.
Zurück zum Zitat Sukumaran, R. K., Mathew, A. K., Kumar, M. K., Abraham, A., Chistopher, M., Sankar, M. (2017). First- and second-generation ethanol in India: A comprehensive overview on feedstock availability, composition, and potential conversion yields. In Sustainable Biofuels Development in India, Springer. Sukumaran, R. K., Mathew, A. K., Kumar, M. K., Abraham, A., Chistopher, M., Sankar, M. (2017). First- and second-generation ethanol in India: A comprehensive overview on feedstock availability, composition, and potential conversion yields. In Sustainable Biofuels Development in India, Springer.
11.
Zurück zum Zitat Ayeni, A. O., Adeeyo, O. A., Oresegun, O. M., & Oladimeji, T. E. (2015). Compositional analysis of lignocellulosic materials: Evaluation of an economically viable method suitable for woody and non-woody biomass. AJER, 4(4), 14–19. Ayeni, A. O., Adeeyo, O. A., Oresegun, O. M., & Oladimeji, T. E. (2015). Compositional analysis of lignocellulosic materials: Evaluation of an economically viable method suitable for woody and non-woody biomass. AJER, 4(4), 14–19.
12.
Zurück zum Zitat Bordoloi, N., Narzari, R., Chutia, R. S., Bhaskar, T., & Kataki, R. (2015). Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: Characterization of bio-oil and its sub-fractions. Bioresource Technology, 178, 83–89.CrossRef Bordoloi, N., Narzari, R., Chutia, R. S., Bhaskar, T., & Kataki, R. (2015). Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: Characterization of bio-oil and its sub-fractions. Bioresource Technology, 178, 83–89.CrossRef
13.
Zurück zum Zitat Prakash, P., & Sheeba, K. N. (2016). Prediction of pyrolysis and gasification characteristics of different biomass from their physico-chemical properties. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(11), 1530–1536.CrossRef Prakash, P., & Sheeba, K. N. (2016). Prediction of pyrolysis and gasification characteristics of different biomass from their physico-chemical properties. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(11), 1530–1536.CrossRef
14.
Zurück zum Zitat Strezov, V., Moghtaderi, B., & Lucas, J. (2003). Thermal study of decomposition of selected biomass samples. Journal of Thermal Analysis and Calorimetry, 72, 1041–1048.CrossRef Strezov, V., Moghtaderi, B., & Lucas, J. (2003). Thermal study of decomposition of selected biomass samples. Journal of Thermal Analysis and Calorimetry, 72, 1041–1048.CrossRef
15.
Zurück zum Zitat Rafiq, M. K., Bachmann, R. T., Rafiq, M. T., Shang, Z., Joseph, S., & Long, R. (2016). Influence of pyrolysis temperature on physico-chemical properties of corn stover (Zea mays L.) biochar and feasibility for carbon capture and energy balance. PLoS ONE, 11(6), e0156894.CrossRef Rafiq, M. K., Bachmann, R. T., Rafiq, M. T., Shang, Z., Joseph, S., & Long, R. (2016). Influence of pyrolysis temperature on physico-chemical properties of corn stover (Zea mays L.) biochar and feasibility for carbon capture and energy balance. PLoS ONE, 11(6), e0156894.CrossRef
16.
Zurück zum Zitat Gao, Y., Yang, Y., Qin, Z., & Sun, Y. (2016). Factors affecting the yield of bio-oil from the pyrolysis of coconut shell. Springer Plus, 5, 333.CrossRef Gao, Y., Yang, Y., Qin, Z., & Sun, Y. (2016). Factors affecting the yield of bio-oil from the pyrolysis of coconut shell. Springer Plus, 5, 333.CrossRef
17.
Zurück zum Zitat Mayakaduwa, S. S., Vithanage, M., Karunarathna, A., Mohan, D., & Ok, Y. S. (2016). Interface interactions between insecticide carbofuran and tea waste biochars produced at different pyrolysis temperatures. Chemical Speciation & Bioavailability, 28, 1–4.CrossRef Mayakaduwa, S. S., Vithanage, M., Karunarathna, A., Mohan, D., & Ok, Y. S. (2016). Interface interactions between insecticide carbofuran and tea waste biochars produced at different pyrolysis temperatures. Chemical Speciation & Bioavailability, 28, 1–4.CrossRef
18.
Zurück zum Zitat Gray, M., Johnson, M. G., Dragila, M. I., & Kleber, M. (2014). Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass and Bioenergy, 61, 196–205.CrossRef Gray, M., Johnson, M. G., Dragila, M. I., & Kleber, M. (2014). Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass and Bioenergy, 61, 196–205.CrossRef
19.
Zurück zum Zitat Sut, D., Chutia, R. S., Bordoloi, N. J., Narzari, R., & Kataki, R. (2016). Complete utilization of non-edible oil seeds of Cascabela thevetia through a cascade of approaches for biofuel and by-products. Bioresource Technology, 213, 111–120.CrossRef Sut, D., Chutia, R. S., Bordoloi, N. J., Narzari, R., & Kataki, R. (2016). Complete utilization of non-edible oil seeds of Cascabela thevetia through a cascade of approaches for biofuel and by-products. Bioresource Technology, 213, 111–120.CrossRef
20.
Zurück zum Zitat Liu, Z., Niu, W., Chu, H., Zhou, T., & Niu, Z. (2018). Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues. BioResources, 13(2), 3429–3446. Liu, Z., Niu, W., Chu, H., Zhou, T., & Niu, Z. (2018). Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues. BioResources, 13(2), 3429–3446.
Metadaten
Titel
Agricultural Wastes as Feedstock for Thermo-Chemical Conversion: Products Distribution and Characterization
verfasst von
Samarjit Gogoi
Nilutpal Bhuyan
Debashis Sut
Rumi Narzari
Lina Gogoi
Rupam Kataki
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9228-4_10