Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2020 | OriginalPaper | Buchkapitel

AI Architectures for Very Smart Sensors

verfasst von : Peter Malík, Štefan Krištofík

Erschienen in: Convergence of Artificial Intelligence and the Internet of Things

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The chapter describes modern neural network designs and discusses their advantages and disadvantages. The state-of-the-art neural networks are usually too much computationally difficult which limits their use in mobile and IoT applications. However, they can be modified with special design techniques which would make them suitable for mobile or IoT applications with limited computational power. These techniques for designing more efficient neural networks are described in great detail. Using them opens a way to create extremely efficient neural networks for mobile or even IoT applications. Such neural networks make the applications very intelligent which paves the way for very smart sensors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI 16(2016), pp. 265–283 (2016) Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI 16(2016), pp. 265–283 (2016)
3.
Zurück zum Zitat Braun, M., Krebs, S., Flohr, F., Gavrila, D.M.: The EuroCity persons dataset: a novel benchmark for object detection. In: CoRR (2018). arXiv:​1805.​07193v2 Braun, M., Krebs, S., Flohr, F., Gavrila, D.M.: The EuroCity persons dataset: a novel benchmark for object detection. In: CoRR (2018). arXiv:​1805.​07193v2
4.
Zurück zum Zitat Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. In: CoRR preprint (2017). arXiv:​1706.​05587 Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. In: CoRR preprint (2017). arXiv:​1706.​05587
5.
Zurück zum Zitat Chen, L.-C., Hermans, A., Papandreou, G., Schroff, F., Wang, P., Adam, H.: MaskLab: instance segmentation by refining object detection with semantic and direction features. In: CVPR, pp. 4013–4022 (2018). arXiv:​1712.​04837v1 Chen, L.-C., Hermans, A., Papandreou, G., Schroff, F., Wang, P., Adam, H.: MaskLab: instance segmentation by refining object detection with semantic and direction features. In: CVPR, pp. 4013–4022 (2018). arXiv:​1712.​04837v1
6.
Zurück zum Zitat Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE TPAMI 40(4), pp. 834–848 (2018) Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE TPAMI 40(4), pp. 834–848 (2018)
7.
Zurück zum Zitat Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, Ch., Zhang, Z.: Mxnet: a flexible and efficient machine learning library for heterogeneous distributed systems. In: CoRR (2015). arXiv:​1512.​01274 Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, Ch., Zhang, Z.: Mxnet: a flexible and efficient machine learning library for heterogeneous distributed systems. In: CoRR (2015). arXiv:​1512.​01274
10.
Zurück zum Zitat Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). In: ICLR (2016). arXiv:​1511.​07289v5 Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). In: ICLR (2016). arXiv:​1511.​07289v5
11.
Zurück zum Zitat Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele. B.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele. B.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)
12.
Zurück zum Zitat Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: NIPS, pp. 379–387 (2016). arXiv:​1605.​06409v2 Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: NIPS, pp. 379–387 (2016). arXiv:​1605.​06409v2
13.
Zurück zum Zitat Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009) Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009)
14.
Zurück zum Zitat Denker, J.S., Gardner, W.R., Graf, H.P, Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D., BaIrd, H.S., Guyon I.: Neural Network Recognizer for Hand-Written Zip Code Digits. AT&T Bell Laboratories (1989) Denker, J.S., Gardner, W.R., Graf, H.P, Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D., BaIrd, H.S., Guyon I.: Neural Network Recognizer for Hand-Written Zip Code Digits. AT&T Bell Laboratories (1989)
15.
Zurück zum Zitat Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes (VOC) challenge. In: IJCV 88(2), pp. 303–338 (2010) Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes (VOC) challenge. In: IJCV 88(2), pp. 303–338 (2010)
16.
Zurück zum Zitat Everingham, M., Eslami, S.M.A., Gool, L.V., Williams, Ch.K.I., Winn, J., Zisserma, A.: The pascal visual object classes challenge a retrospective. In: IJCV 111(1), pp. 98–136 (2014) Everingham, M., Eslami, S.M.A., Gool, L.V., Williams, Ch.K.I., Winn, J., Zisserma, A.: The pascal visual object classes challenge a retrospective. In: IJCV 111(1), pp. 98–136 (2014)
18.
Zurück zum Zitat Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014). arXiv:​1311.​2524v5 Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014). arXiv:​1311.​2524v5
19.
Zurück zum Zitat Girshick, R.: Fast R-CNN. In: ICCV (2015) Girshick, R.: Fast R-CNN. In: ICCV (2015)
20.
Zurück zum Zitat Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Proceedings of Advanced in NIPS, Montreal, Canada, pp. 1135–1143 (2015). arXiv:​1506.​02626v3 Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Proceedings of Advanced in NIPS, Montreal, Canada, pp. 1135–1143 (2015). arXiv:​1506.​02626v3
21.
Zurück zum Zitat Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. In: ICLR (2016). arXiv:​1510.​00149v5 Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. In: ICLR (2016). arXiv:​1510.​00149v5
22.
Zurück zum Zitat Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally, W.J.: EIE: efficient inference engine on compressed deep neural network (2016). arXiv:​1602.​01528v1 Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally, W.J.: EIE: efficient inference engine on compressed deep neural network (2016). arXiv:​1602.​01528v1
23.
Zurück zum Zitat He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: ICCV (2015). arXiv:​1502.​01852v1 He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: ICCV (2015). arXiv:​1502.​01852v1
27.
Zurück zum Zitat He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: Proceedings of IEEE ICCV, vol. 2, pp. 1389–1397 (2017) He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: Proceedings of IEEE ICCV, vol. 2, pp. 1389–1397 (2017)
29.
Zurück zum Zitat Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors (2012). arXiv:​1207.​0580 Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors (2012). arXiv:​1207.​0580
30.
Zurück zum Zitat Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: MobileNets: efficient convolutional neural networks for mobile vision applications. In: CoRR (2017). arXiv:​1704.​04861v1 Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: MobileNets: efficient convolutional neural networks for mobile vision applications. In: CoRR (2017). arXiv:​1704.​04861v1
31.
Zurück zum Zitat Huang, G., Sun, Y., Liuy, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: ECCV (4), vol. 9908 of Lecture Notes in Computer Science, pp. 646–661 (2016). arXiv:​1603.​09382v3 Huang, G., Sun, Y., Liuy, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: ECCV (4), vol. 9908 of Lecture Notes in Computer Science, pp. 646–661 (2016). arXiv:​1603.​09382v3
33.
Zurück zum Zitat Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama, S., Murphy, K.: Speed/accuracy trade-offs for modern convolutional object detectors. In: CVPR (2017). arXiv:​1611.​10012v3 Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama, S., Murphy, K.: Speed/accuracy trade-offs for modern convolutional object detectors. In: CVPR (2017). arXiv:​1611.​10012v3
34.
Zurück zum Zitat Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neural networks: training neural networks with low precision weights and activations. In: CoRR (2016). arXiv:​1609.​07061 Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neural networks: training neural networks with low precision weights and activations. In: CoRR (2016). arXiv:​1609.​07061
37.
Zurück zum Zitat Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1 MB model size. In: CoRR (2016). arXiv:​1602.​07360v4 Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1 MB model size. In: CoRR (2016). arXiv:​1602.​07360v4
38.
Zurück zum Zitat Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, Lille, France, pp. 448–456 (2015) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, Lille, France, pp. 448–456 (2015)
39.
Zurück zum Zitat Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.B., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of ACM International Conference on Multimedia, pp. 675–678 (2014). arXiv:​1408.​5093 Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.B., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of ACM International Conference on Multimedia, pp. 675–678 (2014). arXiv:​1408.​5093
40.
Zurück zum Zitat Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical Report, University of Toronto (2009) Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical Report, University of Toronto (2009)
41.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 1097–1105 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 1097–1105 (2012)
42.
Zurück zum Zitat Krizhevsky, A.: cuda-convnet: High-performance c++/cuda implementation of convolutional neural networks (2012) Krizhevsky, A.: cuda-convnet: High-performance c++/cuda implementation of convolutional neural networks (2012)
43.
Zurück zum Zitat LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), pp. 541–551 (1989) LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), pp. 541–551 (1989)
44.
Zurück zum Zitat LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), pp. 2278–2324 (1998) LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), pp. 2278–2324 (1998)
45.
Zurück zum Zitat Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., Zitnick, C.L.: Microsoft COCO: Common objects in context. In: ECCV (2014). arXiv:​1405.​0312v3 Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., Zitnick, C.L.: Microsoft COCO: Common objects in context. In: ECCV (2014). arXiv:​1405.​0312v3
46.
Zurück zum Zitat Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017). arXiv:​1612.​03144v2 Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017). arXiv:​1612.​03144v2
49.
Zurück zum Zitat Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.: SSD: single shot multibox detector. In: ECCV (2016) Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.: SSD: single shot multibox detector. In: ECCV (2016)
50.
Zurück zum Zitat Liu, S., Jia, J., Fidler, S., Urtasun, R.: SGN: sequential grouping networks for instance segmentation. In: ICCV, pp. 3516–3524 (2017) Liu, S., Jia, J., Fidler, S., Urtasun, R.: SGN: sequential grouping networks for instance segmentation. In: ICCV, pp. 3516–3524 (2017)
51.
52.
Zurück zum Zitat Long, J., Shelhamer, E., Darrell, T.: ‘Fully convolutional networks for semantic segmentation’. In: CVPR, pp. 3431–3440 (2015). arXiv:​1411.​4038v2 Long, J., Shelhamer, E., Darrell, T.: ‘Fully convolutional networks for semantic segmentation’. In: CVPR, pp. 3431–3440 (2015). arXiv:​1411.​4038v2
53.
Zurück zum Zitat Luo, W., Li, Y., Urtasun, R., Zemel, R.L.: Understanding the effective receptive field in deep convolutional neural networks. In: CoRR (2017). arXiv:​1701.​04128v2 Luo, W., Li, Y., Urtasun, R., Zemel, R.L.: Understanding the effective receptive field in deep convolutional neural networks. In: CoRR (2017). arXiv:​1701.​04128v2
54.
Zurück zum Zitat Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML (2013) Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML (2013)
55.
Zurück zum Zitat Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe, A., Maaten, L.: Exploring the limits of weakly supervised pretraining. In: ECCV (2), vol. 11206 of Lecture Notes in Computer Science, pp. 185–201 (2018). arXiv:​1805.​00932v1 Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe, A., Maaten, L.: Exploring the limits of weakly supervised pretraining. In: ECCV (2), vol. 11206 of Lecture Notes in Computer Science, pp. 185–201 (2018). arXiv:​1805.​00932v1
56.
Zurück zum Zitat Markidis, S., Chien, S.W.D., Laure, E., Peng, I.B., Vetter, J.S.: NVIDIA tensor core programmability, performance & precision. In: IEEE IPDPS Workshops, pp. 522–531 (2018). arXiv:​1803.​04014v1 Markidis, S., Chien, S.W.D., Laure, E., Peng, I.B., Vetter, J.S.: NVIDIA tensor core programmability, performance & precision. In: IEEE IPDPS Workshops, pp. 522–531 (2018). arXiv:​1803.​04014v1
57.
Zurück zum Zitat Mavromoustakis, C.X., Batalla, J.M., Mastorakis, G., Markakis, E., Pallis, E.: Socially oriented edge computing for energy awareness in IoT architectures. IEEE Commun. Mag. 56(7), pp. 139–145 (2018) Mavromoustakis, C.X., Batalla, J.M., Mastorakis, G., Markakis, E., Pallis, E.: Socially oriented edge computing for energy awareness in IoT architectures. IEEE Commun. Mag. 56(7), pp. 139–145 (2018)
58.
Zurück zum Zitat Miyashita, D., Lee, E.H., Murmann, B.: Convolutional neural networks using logarithmic data representation. In: CoRR (2016). arXiv:​1603.​01025 Miyashita, D., Lee, E.H., Murmann, B.: Convolutional neural networks using logarithmic data representation. In: CoRR (2016). arXiv:​1603.​01025
59.
Zurück zum Zitat Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th ICML, pp. 807–814 (2010) Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th ICML, pp. 807–814 (2010)
60.
Zurück zum Zitat Neuhold, G., Ollmann, T., Bulo, S.R., Kontschieder, P.: The mapillary vistas dataset for semantic understanding of street scenes. In: ICCV (2017) Neuhold, G., Ollmann, T., Bulo, S.R., Kontschieder, P.: The mapillary vistas dataset for semantic understanding of street scenes. In: ICCV (2017)
61.
Zurück zum Zitat Pleiss, G., Chen, D., Huang, G., Li, T., Maaten, L., Weinberger, K.Q.: Memory-efficient implementation of DenseNets. In: CoRR (2017). arXiv:​1707.​06990v1 Pleiss, G., Chen, D., Huang, G., Li, T., Maaten, L., Weinberger, K.Q.: Memory-efficient implementation of DenseNets. In: CoRR (2017). arXiv:​1707.​06990v1
62.
Zurück zum Zitat Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: ‘Large kernel matters—improve semantic segmentation by global convolutional network. In: CVPR, pp. 1743–1751 (2017). arXiv:​1703.​02719v1 Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: ‘Large kernel matters—improve semantic segmentation by global convolutional network. In: CVPR, pp. 1743–1751 (2017). arXiv:​1703.​02719v1
63.
Zurück zum Zitat Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: imagenet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M., (eds.) ECCV, vol. 4, pp. 525–542 (2016) Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: imagenet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M., (eds.) ECCV, vol. 4, pp. 525–542 (2016)
64.
Zurück zum Zitat Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR, pp. 779–788 (2016). arXiv:​1506.​02640v5 Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR, pp. 779–788 (2016). arXiv:​1506.​02640v5
66.
Zurück zum Zitat Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS, pp. 91–99 (2015) Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS, pp. 91–99 (2015)
67.
68.
Zurück zum Zitat Ruan, J., Hu, X., Huo, X., Shi, Y., Chan, F.T.S., Wang, X., Manogaran, G., Mastorakis, G., Mavromoustakis, C.X., Zhao, X.: An IoT-based E-business model of intelligent vegetable greenhouses and its key operations management issues. In: Neural Comput. Appl. 2019, pp. 1–16 (2019) Ruan, J., Hu, X., Huo, X., Shi, Y., Chan, F.T.S., Wang, X., Manogaran, G., Mastorakis, G., Mavromoustakis, C.X., Zhao, X.: An IoT-based E-business model of intelligent vegetable greenhouses and its key operations management issues. In: Neural Comput. Appl. 2019, pp. 1–16 (2019)
69.
Zurück zum Zitat Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. In: Nature 323(6088), pp. 533–536 (1986) Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. In: Nature 323(6088), pp. 533–536 (1986)
70.
Zurück zum Zitat Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. In: IJCV 115(3), pp. 211–252 (2015) Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. In: IJCV 115(3), pp. 211–252 (2015)
71.
Zurück zum Zitat Sanchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and practice. In: RR-8209, INRIA (2013) Sanchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and practice. In: RR-8209, INRIA (2013)
72.
Zurück zum Zitat Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: Inverted Residuals and Linear Bottlenecks. In: ‘CVPR’ IEEE Computer Society, pp. 4510–4520 (2018). arXiv:​1801.​04381v3 Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: Inverted Residuals and Linear Bottlenecks. In: ‘CVPR’ IEEE Computer Society, pp. 4510–4520 (2018). arXiv:​1801.​04381v3
74.
Zurück zum Zitat Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. In: JMLR 15, pp. 1929–1958 (2014) Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. In: JMLR 15, pp. 1929–1958 (2014)
76.
Zurück zum Zitat Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of ICCV (2017). arXiv:​1707.​02968v2 Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of ICCV (2017). arXiv:​1707.​02968v2
77.
Zurück zum Zitat Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR, pp. 1–9 (2015). arXiv:​1409.​4842v1 Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR, pp. 1–9 (2015). arXiv:​1409.​4842v1
78.
Zurück zum Zitat Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016). arXiv:​1512.​00567v3 Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016). arXiv:​1512.​00567v3
79.
Zurück zum Zitat Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: ICLR Workshop, p. 12 (2016). arXiv:​1602.​07261v2 Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: ICLR Workshop, p. 12 (2016). arXiv:​1602.​07261v2
80.
Zurück zum Zitat Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: CVPR (2014), pp. 1701–1708 (2014) Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: CVPR (2014), pp. 1701–1708 (2014)
81.
Zurück zum Zitat Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. In: IJCV (2013) Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. In: IJCV (2013)
82.
Zurück zum Zitat Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona, P.: Caltech-UCSD Birds 200. Technical Report, Caltech (2010) Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona, P.: Caltech-UCSD Birds 200. Technical Report, Caltech (2010)
83.
Zurück zum Zitat Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR, pp. 5987–5995 (2017). arXiv:​1611.​05431v2 Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR, pp. 5987–5995 (2017). arXiv:​1611.​05431v2
85.
Zurück zum Zitat Zhang, D., Yang, J., Ye, D., Hua, G.: Lq-nets: learned quantization for highly accurate and compact deep neural networks. In: Proceedings of ECCV (2018). arXiv:​1807.​10029v1 Zhang, D., Yang, J., Ye, D., Hua, G.: Lq-nets: learned quantization for highly accurate and compact deep neural networks. In: Proceedings of ECCV (2018). arXiv:​1807.​10029v1
87.
Zurück zum Zitat Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: CVPR (2018). arXiv:​1707.​01083v2 Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: CVPR (2018). arXiv:​1707.​01083v2
89.
Zurück zum Zitat Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y.: Incremental network quantization: towards lossless cnns with low-precision weights. In: Proceedings of ICLR (2017) Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y.: Incremental network quantization: towards lossless cnns with low-precision weights. In: Proceedings of ICLR (2017)
90.
Zurück zum Zitat Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. In: IEEE TPAMI (2017) Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. In: IEEE TPAMI (2017)
91.
Zurück zum Zitat Zhuang, B., Shen, Ch., Tan, M., Liu, L., Reid, I.: Structured binary neural networks for accurate image classification and semantic segmentation. In: CoRR (2018). arXiv:​1811.​10413v2 Zhuang, B., Shen, Ch., Tan, M., Liu, L., Reid, I.: Structured binary neural networks for accurate image classification and semantic segmentation. In: CoRR (2018). arXiv:​1811.​10413v2
Metadaten
Titel
AI Architectures for Very Smart Sensors
verfasst von
Peter Malík
Štefan Krištofík
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-44907-0_16