Skip to main content

2025 | OriginalPaper | Buchkapitel

AI-Driven Traffic Optimization in 5G and Beyond: Challenges, Strategies, Solutions, and Prospects

verfasst von : Ezekiel Ehime Agbon, Aminu Chiroma Muhammad, Christopher Akinyemi Alabi, Agburu Ogah Adikpe, Sena Timothy Tersoo, Agbotiname Lucky Imoize, Samarendra Nath Sur

Erschienen in: Advances in Communication, Devices and Networking

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As 5G networks continue to evolve and pave the way for future telecommunication technologies, the role of Artificial Intelligence (AI) and Machine Learning (ML) in optimizing traffic management becomes increasingly crucial. This paper explores the integration of AI and ML in telecommunication networks, focusing on their applications, challenges, and potential solutions for traffic optimization in 5G and beyond. The paper looks into specific use cases, such as network congestion management, quality of service (QoS) enhancement, and energy efficiency improvements. Additionally, the paper discusses the implications of AI-driven traffic optimization on network performance, user experience, and the broader telecommunication industry landscape. Through this review, the paper shed light on the transformative potential of AI and ML in shaping the future of telecommunication networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Allioui H, Mourdi Y (2023) Exploring the full potentials of IoT for better financial growth and stability: a comprehensive survey. Sensors 23(19):8015CrossRef Allioui H, Mourdi Y (2023) Exploring the full potentials of IoT for better financial growth and stability: a comprehensive survey. Sensors 23(19):8015CrossRef
2.
Zurück zum Zitat Dhoni P, Kumar R (2023) Synergizing generative AI and cybersecurity: roles of generative AI entities, companies, agencies, and government in enhancing cybersecurity Dhoni P, Kumar R (2023) Synergizing generative AI and cybersecurity: roles of generative AI entities, companies, agencies, and government in enhancing cybersecurity
3.
Zurück zum Zitat Wang A, Qin Z, Dong YH (2023) Development of an IoT-based parking space management system design. Int J Appl Inf Manag 3(2):91–100CrossRef Wang A, Qin Z, Dong YH (2023) Development of an IoT-based parking space management system design. Int J Appl Inf Manag 3(2):91–100CrossRef
4.
Zurück zum Zitat Weber-Lewerenz B, Vasiliu-Feltes I (2022) Empowering digital innovation by diverse leadership in ICT—a roadmap to a better value system in computer algorithms. Humanist Manag J 7(1):117–134CrossRef Weber-Lewerenz B, Vasiliu-Feltes I (2022) Empowering digital innovation by diverse leadership in ICT—a roadmap to a better value system in computer algorithms. Humanist Manag J 7(1):117–134CrossRef
5.
Zurück zum Zitat Nadeem A, Marjanovic O, Abedin B (2021) Gender bias in AI: implications for managerial practices. In: Responsible AI and analytics for an ethical and inclusive digitized society: 20th IFIP WG 6.11 conference on e-business, e-services and e-society, I3E 2021, Galway, Ireland, 1–3 Sept 2021, proceedings, 2021. Springer International Publishing, pp 259–270 Nadeem A, Marjanovic O, Abedin B (2021) Gender bias in AI: implications for managerial practices. In: Responsible AI and analytics for an ethical and inclusive digitized society: 20th IFIP WG 6.11 conference on e-business, e-services and e-society, I3E 2021, Galway, Ireland, 1–3 Sept 2021, proceedings, 2021. Springer International Publishing, pp 259–270
6.
Zurück zum Zitat Cranmer K, Kanwar G, Racanière S, Rezende DJ, Shanahan PE (2023) Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics. Nat Rev Phys 1–10 Cranmer K, Kanwar G, Racanière S, Rezende DJ, Shanahan PE (2023) Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics. Nat Rev Phys 1–10
7.
Zurück zum Zitat Karnouskos S (2020) Artificial intelligence in digital media: the era of deepfakes. IEEE Trans Technol Soc 1(3):138–147CrossRef Karnouskos S (2020) Artificial intelligence in digital media: the era of deepfakes. IEEE Trans Technol Soc 1(3):138–147CrossRef
8.
Zurück zum Zitat Ali ES, Hasan MK, Hassan R, Saeed RA, Hassan MB, Islam S, Nafi NS, Bevinakoppa S (2021) Machine learning technologies for secure vehicular communication in internet of vehicles: recent advances and applications. Secur Commun Netw Ali ES, Hasan MK, Hassan R, Saeed RA, Hassan MB, Islam S, Nafi NS, Bevinakoppa S (2021) Machine learning technologies for secure vehicular communication in internet of vehicles: recent advances and applications. Secur Commun Netw
9.
Zurück zum Zitat Sharma A, Awasthi Y, Kumar S (2020) The role of blockchain, AI and IoT for smart road traffic management system. In: 2020 IEEE India Council international subsections conference (INDISCON). IEEE, pp 289–296 Sharma A, Awasthi Y, Kumar S (2020) The role of blockchain, AI and IoT for smart road traffic management system. In: 2020 IEEE India Council international subsections conference (INDISCON). IEEE, pp 289–296
10.
Zurück zum Zitat Jebli I, Belouadha FZ, Kabbaj MI, Tilioua A (2021) Prediction of solar energy guided by Pearson correlation using machine learning. Energy 224:120109CrossRef Jebli I, Belouadha FZ, Kabbaj MI, Tilioua A (2021) Prediction of solar energy guided by Pearson correlation using machine learning. Energy 224:120109CrossRef
11.
Zurück zum Zitat Ayvaz S, Alpay K (2021) Predictive maintenance system for production lines in manufacturing: a machine learning approach using IoT data in real-time. Expert Syst Appl 173:114598CrossRef Ayvaz S, Alpay K (2021) Predictive maintenance system for production lines in manufacturing: a machine learning approach using IoT data in real-time. Expert Syst Appl 173:114598CrossRef
12.
Zurück zum Zitat Ahmed Z, Mohamed K, Zeeshan S, Dong X (2020) Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database 2020:baaa010 Ahmed Z, Mohamed K, Zeeshan S, Dong X (2020) Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database 2020:baaa010
13.
Zurück zum Zitat Kunduru AR (2023) Artificial intelligence usage in cloud application performance improvement. Cent Asian J Math Theory Comput Sci 4(8):42–47 Kunduru AR (2023) Artificial intelligence usage in cloud application performance improvement. Cent Asian J Math Theory Comput Sci 4(8):42–47
14.
Zurück zum Zitat Hashmi BQ (2023) Artificial intelligence and its role in information and communication technologies (ICT): application areas of artificial intelligence. In: AI and its convergence with communication technologies. IGI Global, pp 1–18 Hashmi BQ (2023) Artificial intelligence and its role in information and communication technologies (ICT): application areas of artificial intelligence. In: AI and its convergence with communication technologies. IGI Global, pp 1–18
15.
Zurück zum Zitat Gill SS, Xu M, Ottaviani C, Patros P, Bahsoon R, Shaghaghi A, Golec M, Stankovski V, Wu H, Abraham A et al (2022) AI for next generation computing: emerging trends and future directions. Internet Things 19:100514CrossRef Gill SS, Xu M, Ottaviani C, Patros P, Bahsoon R, Shaghaghi A, Golec M, Stankovski V, Wu H, Abraham A et al (2022) AI for next generation computing: emerging trends and future directions. Internet Things 19:100514CrossRef
16.
Zurück zum Zitat Mchergui A, Moulahi T, Zeadally S (2022) Survey on artificial intelligence (AI) techniques for vehicular ad-hoc networks (VANETs). Veh Commun 34:100403 Mchergui A, Moulahi T, Zeadally S (2022) Survey on artificial intelligence (AI) techniques for vehicular ad-hoc networks (VANETs). Veh Commun 34:100403
17.
Zurück zum Zitat Kummetha VC, Kamrani M, Concas S, Kourtellis A, Dokur O (2022) Proactive congestion management via data-driven methods and connected vehicle-based microsimulation. J Intell Transp Syst 1–17 Kummetha VC, Kamrani M, Concas S, Kourtellis A, Dokur O (2022) Proactive congestion management via data-driven methods and connected vehicle-based microsimulation. J Intell Transp Syst 1–17
18.
Zurück zum Zitat Quan W, Xu Z, Liu M, Cheng N, Liu G, Gao D, Zhang H, Shen X, Zhuang W (2022) AI-driven packet forwarding with programmable data plane: a survey. IEEE Commun Surv Tutor Quan W, Xu Z, Liu M, Cheng N, Liu G, Gao D, Zhang H, Shen X, Zhuang W (2022) AI-driven packet forwarding with programmable data plane: a survey. IEEE Commun Surv Tutor
19.
Zurück zum Zitat Nassef O, Sun W, Purmehdi H, Tatipamula M, Mahmoodi T (2022) A survey: distributed machine learning for 5G and beyond. Comput Netw 207:108820CrossRef Nassef O, Sun W, Purmehdi H, Tatipamula M, Mahmoodi T (2022) A survey: distributed machine learning for 5G and beyond. Comput Netw 207:108820CrossRef
20.
Zurück zum Zitat Carrillo D, Kalalas C, Raussi P, Michalopoulos DS, Rodríguez DZ, Kokkoniemi-Tarkkanen H, Ahola K, Vásquez-Peralvo JA, Nardelli PH, Fraidenraich G et al (2022) Boosting 5G on smart grid communication: a smart RAN slicing approach. IEEE Wirel Commun Carrillo D, Kalalas C, Raussi P, Michalopoulos DS, Rodríguez DZ, Kokkoniemi-Tarkkanen H, Ahola K, Vásquez-Peralvo JA, Nardelli PH, Fraidenraich G et al (2022) Boosting 5G on smart grid communication: a smart RAN slicing approach. IEEE Wirel Commun
21.
Zurück zum Zitat Mamadaliev R (2023) Artificial intelligence in cybersecurity: enhancing threat detection and mitigation. In: Scientific collection «InterConf», no 157, pp 360–366 Mamadaliev R (2023) Artificial intelligence in cybersecurity: enhancing threat detection and mitigation. In: Scientific collection «InterConf», no 157, pp 360–366
22.
Zurück zum Zitat Ajaj YS, Al-Kaseem BR, Al-Dunainawi Y (2023) Cyber attacks in SDN-based IoT environment: a review. Al-Iraqia J Sci Eng Res 2(3):74–83 Ajaj YS, Al-Kaseem BR, Al-Dunainawi Y (2023) Cyber attacks in SDN-based IoT environment: a review. Al-Iraqia J Sci Eng Res 2(3):74–83
23.
Zurück zum Zitat Samant IS, Panda S, Rout PK (2023) Recent advancements on cyber security for smart-grids: a survey. In: 2023 international conference in advances in power, signal, and information technology (APSIT). IEEE, pp 572–577 Samant IS, Panda S, Rout PK (2023) Recent advancements on cyber security for smart-grids: a survey. In: 2023 international conference in advances in power, signal, and information technology (APSIT). IEEE, pp 572–577
24.
Zurück zum Zitat Markevych M, Dawson M (2023) A review of enhancing intrusion detection systems for cybersecurity using artificial intelligence (AI). In: International conference knowledge-based organization, vol 29, no 3, pp 30–37 Markevych M, Dawson M (2023) A review of enhancing intrusion detection systems for cybersecurity using artificial intelligence (AI). In: International conference knowledge-based organization, vol 29, no 3, pp 30–37
25.
Zurück zum Zitat Homssi BA, Dakic K, Wang K, Alpcan T, Allen B, Kandeepan S, Al-Hourani A, Saad W (2022) Artificial intelligence techniques for next-generation mega satellite networks. arXiv preprint arXiv:2207.00414 Homssi BA, Dakic K, Wang K, Alpcan T, Allen B, Kandeepan S, Al-Hourani A, Saad W (2022) Artificial intelligence techniques for next-generation mega satellite networks. arXiv preprint arXiv:​2207.​00414
26.
Zurück zum Zitat Elfatih NM, Hasan MK, Kamal Z, Gupta D, Saeed RA, Ali ES, Hosain MS (2022) Internet of vehicle’s resource management in 5G networks using AI technologies: current status and trends. IET Commun 16(5):400–420CrossRef Elfatih NM, Hasan MK, Kamal Z, Gupta D, Saeed RA, Ali ES, Hosain MS (2022) Internet of vehicle’s resource management in 5G networks using AI technologies: current status and trends. IET Commun 16(5):400–420CrossRef
27.
Zurück zum Zitat Ortiz F, Monzon Baeza V, Garces-Socarras LM, Vásquez-Peralvo JA, Gonzalez JL, Fontanesi G, Lagunas E, Querol J, Chatzinotas S (2023) Onboard processing in satellite communications using AI accelerators. Aerospace 10(2):101 Ortiz F, Monzon Baeza V, Garces-Socarras LM, Vásquez-Peralvo JA, Gonzalez JL, Fontanesi G, Lagunas E, Querol J, Chatzinotas S (2023) Onboard processing in satellite communications using AI accelerators. Aerospace 10(2):101
28.
Zurück zum Zitat Sundarakani B, Ajaykumar A, Gunasekaran A (2021) Big data driven supply chain design and applications for blockchain: an action research using case study approach. Omega 102:102452CrossRef Sundarakani B, Ajaykumar A, Gunasekaran A (2021) Big data driven supply chain design and applications for blockchain: an action research using case study approach. Omega 102:102452CrossRef
29.
Zurück zum Zitat Cioffi R, Travaglioni M, Piscitelli G, Petrillo A, De Felice F (2020) Artificial intelligence and machine learning applications in smart production: progress, trends, and directions. Sustainability 12(2):492CrossRef Cioffi R, Travaglioni M, Piscitelli G, Petrillo A, De Felice F (2020) Artificial intelligence and machine learning applications in smart production: progress, trends, and directions. Sustainability 12(2):492CrossRef
30.
Zurück zum Zitat Alam A (2022) A digital game based learning approach for effective curriculum transaction for teaching-learning of artificial intelligence and machine learning. In: 2022 international conference on sustainable computing and data communication systems (ICSCDS), Apr 2022. IEEE, pp 69–74 Alam A (2022) A digital game based learning approach for effective curriculum transaction for teaching-learning of artificial intelligence and machine learning. In: 2022 international conference on sustainable computing and data communication systems (ICSCDS), Apr 2022. IEEE, pp 69–74
31.
Zurück zum Zitat Khang A, Shah V, Rani S (eds) (2023) Handbook of research on AI-based technologies and applications in the era of the metaverse. IGI Global Khang A, Shah V, Rani S (eds) (2023) Handbook of research on AI-based technologies and applications in the era of the metaverse. IGI Global
32.
Zurück zum Zitat Pillai SV, Kumar RS (2021) The role of data-driven artificial intelligence on COVID-19 disease management in public sphere: a review. Decision 48:375–389CrossRef Pillai SV, Kumar RS (2021) The role of data-driven artificial intelligence on COVID-19 disease management in public sphere: a review. Decision 48:375–389CrossRef
33.
Zurück zum Zitat Oztoprak K, Tuncel YK, Butun I (2023) Technological transformation of telco operators towards seamless IoT edge-cloud continuum. Sensors 23(2):1004CrossRef Oztoprak K, Tuncel YK, Butun I (2023) Technological transformation of telco operators towards seamless IoT edge-cloud continuum. Sensors 23(2):1004CrossRef
34.
Zurück zum Zitat French A, Shim JP, Risius M, Larsen KR, Jain H (2021) The 4th industrial revolution powered by the integration of AI, blockchain, and 5G. Commun Assoc Inf Syst 49(1):6 French A, Shim JP, Risius M, Larsen KR, Jain H (2021) The 4th industrial revolution powered by the integration of AI, blockchain, and 5G. Commun Assoc Inf Syst 49(1):6
35.
Zurück zum Zitat Li C, Li X, Chen M, Sun X (2023) Deep learning and image recognition. In: 2023 IEEE 6th international conference on electronic information and communication technology (ICEICT). IEEE, pp 557–562 Li C, Li X, Chen M, Sun X (2023) Deep learning and image recognition. In: 2023 IEEE 6th international conference on electronic information and communication technology (ICEICT). IEEE, pp 557–562
36.
Zurück zum Zitat Wamba-Taguimdje SL, Fosso Wamba S, Kala Kamdjoug JR, Tchatchouang Wanko CE (2020) Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects. Bus Process Manag J 26(7):1893–1924 Wamba-Taguimdje SL, Fosso Wamba S, Kala Kamdjoug JR, Tchatchouang Wanko CE (2020) Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects. Bus Process Manag J 26(7):1893–1924
37.
Zurück zum Zitat Uyyala P, Yadav DC (2023) The role of AI in the development of next-generation networking systems, vol 15, no v, pp 1048–1059 Uyyala P, Yadav DC (2023) The role of AI in the development of next-generation networking systems, vol 15, no v, pp 1048–1059
38.
Zurück zum Zitat Heidari A, Jafari Navimipour N, Unal M, Zhang G (2023) Machine learning applications in internet-of-drones: systematic review, recent deployments, and open issues. ACM Comput Surv 55(12):1–45 Heidari A, Jafari Navimipour N, Unal M, Zhang G (2023) Machine learning applications in internet-of-drones: systematic review, recent deployments, and open issues. ACM Comput Surv 55(12):1–45
39.
Zurück zum Zitat Mahmood MR, Matin MA, Sarigiannidis P, Goudos SK (2022) A comprehensive review on artificial intelligence/machine learning algorithms for empowering the future IoT toward 6G era. IEEE Access 10:87535–87562CrossRef Mahmood MR, Matin MA, Sarigiannidis P, Goudos SK (2022) A comprehensive review on artificial intelligence/machine learning algorithms for empowering the future IoT toward 6G era. IEEE Access 10:87535–87562CrossRef
40.
Zurück zum Zitat Rammohan A (2023) Revolutionizing intelligent transportation systems with cellular vehicle-to-everything (C-V2X) technology: current trends, use cases, emerging technologies, standardization bodies, industry analytics and future directions. Veh Commun 100638 Rammohan A (2023) Revolutionizing intelligent transportation systems with cellular vehicle-to-everything (C-V2X) technology: current trends, use cases, emerging technologies, standardization bodies, industry analytics and future directions. Veh Commun 100638
41.
Zurück zum Zitat Bartsiokas IA, Gkonis PK, Kaklamani DI, Venieris IS (2022) ML-based radio resource management in 5G and beyond networks: a survey. IEEE Access 10:83507–83528CrossRef Bartsiokas IA, Gkonis PK, Kaklamani DI, Venieris IS (2022) ML-based radio resource management in 5G and beyond networks: a survey. IEEE Access 10:83507–83528CrossRef
42.
Zurück zum Zitat Mehmood MU, Chun D, Han H, Jeon G, Chen K (2021) A review of the applications of artificial intelligence and big data to buildings for energy-efficiency and a comfortable indoor living environment. Energy Build 202:109383CrossRef Mehmood MU, Chun D, Han H, Jeon G, Chen K (2021) A review of the applications of artificial intelligence and big data to buildings for energy-efficiency and a comfortable indoor living environment. Energy Build 202:109383CrossRef
43.
Zurück zum Zitat Chochliouros IP, Kourtis MA, Spiliopoulou AS, Lazaridis P, Zaharis Z, Zarakovitis C, Kourtis A (2021) Energy efficiency concerns and trends in future 5G network infrastructures. Energies 14(17):5392CrossRef Chochliouros IP, Kourtis MA, Spiliopoulou AS, Lazaridis P, Zaharis Z, Zarakovitis C, Kourtis A (2021) Energy efficiency concerns and trends in future 5G network infrastructures. Energies 14(17):5392CrossRef
44.
Zurück zum Zitat Balmer RE, Levin SL, Schmidt S (2020) Artificial intelligence applications in telecommunications and other network industries. Telecommun Policy 44(6):101977CrossRef Balmer RE, Levin SL, Schmidt S (2020) Artificial intelligence applications in telecommunications and other network industries. Telecommun Policy 44(6):101977CrossRef
45.
Zurück zum Zitat Wang CX, Di Renzo M, Stanczak S, Wang S, Larsson EG (2020) Artificial intelligence enabled wireless networking for 5G and beyond: recent advances and future challenges. IEEE Wirel Commun 27(1):16–23CrossRef Wang CX, Di Renzo M, Stanczak S, Wang S, Larsson EG (2020) Artificial intelligence enabled wireless networking for 5G and beyond: recent advances and future challenges. IEEE Wirel Commun 27(1):16–23CrossRef
46.
Zurück zum Zitat Ullah Z, Al-Turjman F, Mostarda L, Gagliardi R (2020) Applications of artificial intelligence and machine learning in smart cities. Comput Commun 154:313–323CrossRef Ullah Z, Al-Turjman F, Mostarda L, Gagliardi R (2020) Applications of artificial intelligence and machine learning in smart cities. Comput Commun 154:313–323CrossRef
47.
Zurück zum Zitat Kaur J, Khan MA, Iftikhar M, Imran M, Haq QEU (2021) Machine learning techniques for 5G and beyond. IEEE Access 9:23472–23488CrossRef Kaur J, Khan MA, Iftikhar M, Imran M, Haq QEU (2021) Machine learning techniques for 5G and beyond. IEEE Access 9:23472–23488CrossRef
48.
Zurück zum Zitat Rekkas VP, Sotiroudis S, Sarigiannidis P, Wan S, Karagiannidis GK, Goudos SK (2021) Machine learning in beyond 5G/6G networks—state-of-the-art and future trends. Electronics 10(22):2786CrossRef Rekkas VP, Sotiroudis S, Sarigiannidis P, Wan S, Karagiannidis GK, Goudos SK (2021) Machine learning in beyond 5G/6G networks—state-of-the-art and future trends. Electronics 10(22):2786CrossRef
49.
Zurück zum Zitat Morocho-Cayamcela ME, Lee H, Lim W (2019) Machine learning for 5G/B5G mobile and wireless communications: potential, limitations, and future directions. IEEE Access 7:137184–137206CrossRef Morocho-Cayamcela ME, Lee H, Lim W (2019) Machine learning for 5G/B5G mobile and wireless communications: potential, limitations, and future directions. IEEE Access 7:137184–137206CrossRef
50.
Zurück zum Zitat Fourati H, Maaloul R, Chaari L (2021) A survey of 5G network systems: challenges and machine learning approaches. Int J Mach Learn Cybern 12:385–431CrossRef Fourati H, Maaloul R, Chaari L (2021) A survey of 5G network systems: challenges and machine learning approaches. Int J Mach Learn Cybern 12:385–431CrossRef
51.
Zurück zum Zitat Zhang S, Zhu D (2020) Towards artificial intelligence enabled 6G: state of the art, challenges, and opportunities. Comput Netw 183:107556CrossRef Zhang S, Zhu D (2020) Towards artificial intelligence enabled 6G: state of the art, challenges, and opportunities. Comput Netw 183:107556CrossRef
52.
Zurück zum Zitat Kato N, Mao B, Tang F, Kawamoto Y, Liu J (2020) Ten challenges in advancing machine learning technologies toward 6G. IEEE Wirel Commun 27(3):96–103CrossRef Kato N, Mao B, Tang F, Kawamoto Y, Liu J (2020) Ten challenges in advancing machine learning technologies toward 6G. IEEE Wirel Commun 27(3):96–103CrossRef
53.
Zurück zum Zitat Chafika B, Taleb T, Phan CT, Tselios C, Tsolis G (2021) Distributed AI-based security for massive numbers of network slices in 5G & beyond mobile systems. In: 2021 joint European conference on networks and communications & 6G summit (EuCNC/6G summit). IEEE, pp 401–406 Chafika B, Taleb T, Phan CT, Tselios C, Tsolis G (2021) Distributed AI-based security for massive numbers of network slices in 5G & beyond mobile systems. In: 2021 joint European conference on networks and communications & 6G summit (EuCNC/6G summit). IEEE, pp 401–406
54.
Zurück zum Zitat Thantharate A, Paropkari R, Walunj V, Beard C, Kankariya P (2020) Secure5G: a deep learning framework towards a secure network slicing in 5G and beyond. In: 2020 10th annual computing and communication workshop and conference (CCWC). IEEE, pp 0852–0857 Thantharate A, Paropkari R, Walunj V, Beard C, Kankariya P (2020) Secure5G: a deep learning framework towards a secure network slicing in 5G and beyond. In: 2020 10th annual computing and communication workshop and conference (CCWC). IEEE, pp 0852–0857
55.
Zurück zum Zitat Suárez L, Espes D, Le Parc P, Cuppens F, Bertin P, Phan CT (2018) Enhancing network slice security via artificial intelligence: challenges and solutions. In: Conference C&ESAR 2018 Suárez L, Espes D, Le Parc P, Cuppens F, Bertin P, Phan CT (2018) Enhancing network slice security via artificial intelligence: challenges and solutions. In: Conference C&ESAR 2018
56.
Zurück zum Zitat Edmonds J, Bendett S, Fink A, Chesnut M, Gorenburg D, Kofman M, Stricklin K, Waller J (2021) Artificial intelligence and autonomy in Russia. CNA Edmonds J, Bendett S, Fink A, Chesnut M, Gorenburg D, Kofman M, Stricklin K, Waller J (2021) Artificial intelligence and autonomy in Russia. CNA
57.
Zurück zum Zitat Kirley E, McMahon M (2020) The murky ethics of emoji: comparative responses to the diversity question. Rich JL Tech 26:1 Kirley E, McMahon M (2020) The murky ethics of emoji: comparative responses to the diversity question. Rich JL Tech 26:1
58.
Zurück zum Zitat Brik B, Chergui H, Zanzi L, Devoti F, Ksentini A, Siddiqui MS, Costa-Pérez X, Verikoukis C (2023) A survey on explainable AI for 6G O-RAN: architecture, use cases, challenges and research directions. arXiv preprint arXiv:2307.00319 Brik B, Chergui H, Zanzi L, Devoti F, Ksentini A, Siddiqui MS, Costa-Pérez X, Verikoukis C (2023) A survey on explainable AI for 6G O-RAN: architecture, use cases, challenges and research directions. arXiv preprint arXiv:​2307.​00319
59.
Zurück zum Zitat Chen M, Challita U, Saad W, Yin C, Debbah M (2019) Artificial neural networks-based machine learning for wireless networks: a tutorial. IEEE Commun Surv Tutor 21(4):3039–3071CrossRef Chen M, Challita U, Saad W, Yin C, Debbah M (2019) Artificial neural networks-based machine learning for wireless networks: a tutorial. IEEE Commun Surv Tutor 21(4):3039–3071CrossRef
60.
Zurück zum Zitat Sun Y, Peng M, Zhou Y, Huang Y, Mao S (2019) Application of machine learning in wireless networks: key techniques and open issues. IEEE Commun Surv Tutor 21(4):3072–3108CrossRef Sun Y, Peng M, Zhou Y, Huang Y, Mao S (2019) Application of machine learning in wireless networks: key techniques and open issues. IEEE Commun Surv Tutor 21(4):3072–3108CrossRef
61.
Zurück zum Zitat Shafin R, Liu L, Chandrasekhar V, Chen H, Reed J, Zhang JC (2020) Artificial intelligence-enabled cellular networks: a critical path to beyond-5G and 6G. IEEE Wirel Commun 27(2):212–217CrossRef Shafin R, Liu L, Chandrasekhar V, Chen H, Reed J, Zhang JC (2020) Artificial intelligence-enabled cellular networks: a critical path to beyond-5G and 6G. IEEE Wirel Commun 27(2):212–217CrossRef
62.
Zurück zum Zitat Porambage P, Gür G, Osorio DPM, Livanage M, Ylianttila M (2021) 6G security challenges and potential solutions. In: 2021 joint European conference on networks and communications & 6G summit (EuCNC/6G summit). IEEE, pp 622–627 Porambage P, Gür G, Osorio DPM, Livanage M, Ylianttila M (2021) 6G security challenges and potential solutions. In: 2021 joint European conference on networks and communications & 6G summit (EuCNC/6G summit). IEEE, pp 622–627
63.
Zurück zum Zitat Dafallah H (2023) A qualitative analysis of the challenges associated with AI adoption in research and development in the telecommunication industry in Sweden (Ericsson as a case study), MBA Thesis, Department of Industrial Economics, Blekinge Institute of Technology, SE-371 79 Karlskrona, Sweden Dafallah H (2023) A qualitative analysis of the challenges associated with AI adoption in research and development in the telecommunication industry in Sweden (Ericsson as a case study), MBA Thesis, Department of Industrial Economics, Blekinge Institute of Technology, SE-371 79 Karlskrona, Sweden
64.
Zurück zum Zitat Liang W, Li KC, Long J, Kui X, Zomaya AY (2019) An industrial network intrusion detection algorithm based on multifeature data clustering optimization model. IEEE Trans Ind Inform 16(3):2063–2071CrossRef Liang W, Li KC, Long J, Kui X, Zomaya AY (2019) An industrial network intrusion detection algorithm based on multifeature data clustering optimization model. IEEE Trans Ind Inform 16(3):2063–2071CrossRef
65.
Zurück zum Zitat Verma S, Sood N, Sharma AK (2019) Genetic algorithm-based optimized cluster head selection for single and multiple data sinks in heterogeneous wireless sensor network. Appl Soft Comput 85:105788CrossRef Verma S, Sood N, Sharma AK (2019) Genetic algorithm-based optimized cluster head selection for single and multiple data sinks in heterogeneous wireless sensor network. Appl Soft Comput 85:105788CrossRef
66.
Zurück zum Zitat Behera TM, Mohapatra SK, Samal UC, Khan MS, Daneshmand M, Gandomi AH (2019) Residual energy-based cluster-head selection in WSNs for IoT application. IEEE Internet Things J 6(3):5132–5139CrossRef Behera TM, Mohapatra SK, Samal UC, Khan MS, Daneshmand M, Gandomi AH (2019) Residual energy-based cluster-head selection in WSNs for IoT application. IEEE Internet Things J 6(3):5132–5139CrossRef
Metadaten
Titel
AI-Driven Traffic Optimization in 5G and Beyond: Challenges, Strategies, Solutions, and Prospects
verfasst von
Ezekiel Ehime Agbon
Aminu Chiroma Muhammad
Christopher Akinyemi Alabi
Agburu Ogah Adikpe
Sena Timothy Tersoo
Agbotiname Lucky Imoize
Samarendra Nath Sur
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6465-5_40