Skip to main content

2023 | OriginalPaper | Buchkapitel

AI-Enabled Automation Solution for Utilization Management in Healthcare Insurance

verfasst von : Gaurav Karki, Jay Bharateesh Simha, Rashmi Agarwal

Erschienen in: Intelligent Systems and Machine Learning

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As businesses advance toward digitalization by automating an increasing number of procedures, unstructured forms of text in documents present new challenges. Most organizational data is unstructured, and this phenomenon is on the rise. Businesses like healthcare and insurance are embracing business process automation and making considerable progress along the entire value chain. Artificial intelligence (AI) algorithms that help in decision-making, connect information, interpret data, and apply the insights gained to rethink how to make better judgments are necessary for business process automation.
A healthcare procedure called Prior Authorization (PA) could be made better with the help of AI. PA is an essential administrative process that is a component of their utilization management systems, and as a condition of coverage, insurers require providers to obtain preapproval for the provision of a service or prescription. The processing of insurance claim documents can be facilitated using Natural Language Processing (NLP). This paper describes the migration of manual procedures to AI-based solutions in order to accelerate the process. The use of text similarity in systems for information retrieval, question-answering, and other purposes has attracted significant research. This paper suggests using a universal sentence encoder, a more focused strategy, to handle health insurance claims. By extracting text features, including semantic analysis with sentence embedding, the context of the document may be determined. The outcome would have a variety of possible advantages for members, providers, and insurers. AI models for the PA process are seen as promising due to their accuracy and speed of execution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
6.
Zurück zum Zitat Kumar, M., Ghani, R., Mei, Z.S.: Data mining to predict and prevent errors in health insurance claims processing. In: Proceedings of the ACM SIGKDD International Conference Knowledge Discovery and Data Mining, pp. 65–73 (2010). https://doi.org/10.1145/1835804.1835816 Kumar, M., Ghani, R., Mei, Z.S.: Data mining to predict and prevent errors in health insurance claims processing. In: Proceedings of the ACM SIGKDD International Conference Knowledge Discovery and Data Mining, pp. 65–73 (2010). https://​doi.​org/​10.​1145/​1835804.​1835816
7.
Zurück zum Zitat Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)MATH Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)MATH
9.
Zurück zum Zitat Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning. http://proceedings.mlr.press/v32/le14.html?ref=https://githubhelp.com. Accessed 10 Aug 2022 Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning. http://​proceedings.​mlr.​press/​v32/​le14.​html?​ref=​https://githubhelp.com. Accessed 10 Aug 2022
11.
13.
Zurück zum Zitat Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. http://nlp/. Accessed 15 Aug 2022 Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. http://​nlp/​.​ Accessed 15 Aug 2022
15.
Zurück zum Zitat Zhi, X., Yuexin, S., Jin, M., Lujie, Z., Zijian, D.: Research on the Pearson correlation coefficient evaluation method of analog signal in the process of unit peak load regulation Zhi, X., Yuexin, S., Jin, M., Lujie, Z., Zijian, D.: Research on the Pearson correlation coefficient evaluation method of analog signal in the process of unit peak load regulation
Metadaten
Titel
AI-Enabled Automation Solution for Utilization Management in Healthcare Insurance
verfasst von
Gaurav Karki
Jay Bharateesh Simha
Rashmi Agarwal
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-35081-8_24