Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

23.03.2016 | Ausgabe 1-2/2017

Designs, Codes and Cryptography 1-2/2017

Algebraic decoding of folded Gabidulin codes

Zeitschrift:
Designs, Codes and Cryptography > Ausgabe 1-2/2017
Autoren:
Hannes Bartz, Vladimir Sidorenko
Wichtige Hinweise
This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.

Abstract

An efficient interpolation-based decoding algorithm for \(h\)-folded Gabidulin codes is presented that can correct rank errors beyond half the minimum rank distance for any code rate \(0\le R\le 1\). The algorithm serves as a list decoder or as a probabilistic unique decoder and improves upon existing schemes, especially for high code rates. A probabilistic unique decoder with adjustable decoding radius is presented. The decoder outputs a unique solution with high probability and requires at most \(\mathcal {O}({s^2n^2})\) operations in \(\mathbb {F}_{q^m}\), where \(1\le s\le h\) is a decoding parameter and \(n\le m\) is the length of the unfolded code over \(\mathbb {F}_{q^m}\). An upper bound on the average list size of folded Gabidulin codes and on the decoding failure probability of the decoder is given. Applying the ideas to a list decoding algorithm by Mahdavifar and Vardy (List-decoding of subspace codes and rank-metric codes up to Singleton bound, ISIT 2012) improves the performance when used as probabilistic unique decoder and gives an upper bound on the failure probability.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1-2/2017

Designs, Codes and Cryptography 1-2/2017 Zur Ausgabe

Premium Partner

    Bildnachweise