Skip to main content

2015 | OriginalPaper | Buchkapitel

13. Algebraic Solvers

verfasst von : Manfred Kaltenbacher

Erschienen in: Numerical Simulation of Mechatronic Sensors and Actuators

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, many different formulations using Lagrange (nodal) as well as Nédélec (edge) finite elements for the numerical computation of Maxwell’s equations have been published, e.g., [1, 2].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat O. Biró, K. Preis, On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy currents. IEEE Trans. Magn. 25(4), 3145–3159 (1989)CrossRef O. Biró, K. Preis, On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy currents. IEEE Trans. Magn. 25(4), 3145–3159 (1989)CrossRef
2.
Zurück zum Zitat Y. Kawase, O. Miyatani, T. Yamaguchi, Numerical analysis of dynamic characteristics of electromagnets using 3-d finite element method with edge elements. IEEE Trans. Magn. 30(5), 3248–3251 (1994)CrossRef Y. Kawase, O. Miyatani, T. Yamaguchi, Numerical analysis of dynamic characteristics of electromagnets using 3-d finite element method with edge elements. IEEE Trans. Magn. 30(5), 3248–3251 (1994)CrossRef
3.
4.
Zurück zum Zitat R. Hiptmair, Multigrid method for Maxwell’s equations. SIAJN 36(1), 204–225 (1999)MathSciNet R. Hiptmair, Multigrid method for Maxwell’s equations. SIAJN 36(1), 204–225 (1999)MathSciNet
5.
Zurück zum Zitat M. Schinnerl, J. Schöberl, M. Kaltenbacher, Nested multigrid methods for the fast numerical computation of 3D magnetic fields. IEEE Trans. Magn. 36(4), 1557–1560 (2000)CrossRef M. Schinnerl, J. Schöberl, M. Kaltenbacher, Nested multigrid methods for the fast numerical computation of 3D magnetic fields. IEEE Trans. Magn. 36(4), 1557–1560 (2000)CrossRef
6.
Zurück zum Zitat W.L. Briggs, A Multigrid Tutorial, SIAM, 1987 W.L. Briggs, A Multigrid Tutorial, SIAM, 1987
7.
Zurück zum Zitat U. Rüde, Mathematical and computational techniques for multilevel adaptive methods, (SIAM, 1993) U. Rüde, Mathematical and computational techniques for multilevel adaptive methods, (SIAM, 1993)
8.
Zurück zum Zitat J.W. Ruge, K. Stüben, In Algebraic Multigrid (AMG), Multigrid Methods, Frontiers in Applied Mathematics, ed. by S. McCormick (SIAM, Philadelphia, 1986), pp. 73–130 J.W. Ruge, K. Stüben, In Algebraic Multigrid (AMG), Multigrid Methods, Frontiers in Applied Mathematics, ed. by S. McCormick (SIAM, Philadelphia, 1986), pp. 73–130
9.
Zurück zum Zitat Y. Saad, Iterative Methods for Sparse Linear Systems (PWS Publication, Company, 1996)MATH Y. Saad, Iterative Methods for Sparse Linear Systems (PWS Publication, Company, 1996)MATH
10.
11.
Zurück zum Zitat W. Hackbusch, Multigrid Methods and Application (Springer, Berlin, New York, 1985)CrossRef W. Hackbusch, Multigrid Methods and Application (Springer, Berlin, New York, 1985)CrossRef
12.
Zurück zum Zitat M. Jung, U. Langer, A. Meyer, W. Queck, M. Schneider, Multigrid Preconditioners and their Application. In: Proceedings of the 3rd GDR Multigrid Seminar held at Biesenthal, Karl-Weierstraß-Institut für Mathematik, pp. 11–52, May (1989) M. Jung, U. Langer, A. Meyer, W. Queck, M. Schneider, Multigrid Preconditioners and their Application. In: Proceedings of the 3rd GDR Multigrid Seminar held at Biesenthal, Karl-Weierstraß-Institut für Mathematik, pp. 11–52, May (1989)
13.
Zurück zum Zitat J. Schöberl, An advancing front 2D/3D-mesh generator based on abstract rules, Comput. Vis. Sci. no. 1, 41–52, (1997) J. Schöberl, An advancing front 2D/3D-mesh generator based on abstract rules, Comput. Vis. Sci. no. 1, 41–52, (1997)
14.
Zurück zum Zitat T. Nakata, N. Takahashi, H. Morishige, J.L. Coulomb, C. Sabonnadiere, Analysis of 3D Static Force Problem. In: Proceedings of the TEAM Workshop on Computation of Applied Electromagnetics in Materials, pp. 73–79, (1993) T. Nakata, N. Takahashi, H. Morishige, J.L. Coulomb, C. Sabonnadiere, Analysis of 3D Static Force Problem. In: Proceedings of the TEAM Workshop on Computation of Applied Electromagnetics in Materials, pp. 73–79, (1993)
15.
Zurück zum Zitat B. Heise, Mehrgitter-Newton-Verfahren zur Berechnung nichtlinearer magnetischer Felder, Ph.D. thesis, TU Chemnitz, 1994 B. Heise, Mehrgitter-Newton-Verfahren zur Berechnung nichtlinearer magnetischer Felder, Ph.D. thesis, TU Chemnitz, 1994
16.
Zurück zum Zitat K. Fujiwara, T. Nakata, H. Ohashi, Improvement for convergence characteristic of ICCG method for the A-\(\Phi \) method using edge elements. IEEE Trans. Magn. 32(3), 804–807 (1996)CrossRef K. Fujiwara, T. Nakata, H. Ohashi, Improvement for convergence characteristic of ICCG method for the A-\(\Phi \) method using edge elements. IEEE Trans. Magn. 32(3), 804–807 (1996)CrossRef
18.
Zurück zum Zitat F. Kickinger, U. Langer, A note on the global extraction element-by-element method. ZAMM, no. 78, 965–966 (1998) F. Kickinger, U. Langer, A note on the global extraction element-by-element method. ZAMM, no. 78, 965–966 (1998)
19.
Zurück zum Zitat S. Reitzinger, Algebraic Multigrid Methods for Large Scale Finite Element Equations. Reihe C—Technik und Naturwissenschaften, no. 36, Universitätsverlag Rudolf Trauner, (2001) S. Reitzinger, Algebraic Multigrid Methods for Large Scale Finite Element Equations. Reihe C—Technik und Naturwissenschaften, no. 36, Universitätsverlag Rudolf Trauner, (2001)
20.
Zurück zum Zitat P. Vanek, J. Mandel, M. Brezina, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. COMPU 56, 179–196 (1996)CrossRefMATHMathSciNet P. Vanek, J. Mandel, M. Brezina, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. COMPU 56, 179–196 (1996)CrossRefMATHMathSciNet
21.
Zurück zum Zitat A. Brandt, Algebraic multigrid theory: The symmetric case. APPMC 19, 23–56 (1986)MATH A. Brandt, Algebraic multigrid theory: The symmetric case. APPMC 19, 23–56 (1986)MATH
22.
Zurück zum Zitat M. Kaltenbacher, H. Landes, S. Reitzinger, R. Peipp, 3D simulation of electrostatic-mechanical transducers using algebraic multigrid. IEEE Trans. Magn. 38(2), 985–988 (2002)CrossRef M. Kaltenbacher, H. Landes, S. Reitzinger, R. Peipp, 3D simulation of electrostatic-mechanical transducers using algebraic multigrid. IEEE Trans. Magn. 38(2), 985–988 (2002)CrossRef
23.
Zurück zum Zitat M. Kaltenbacher, S. Reitzinger, Algebraic Multigrid for Solving Electromechanical Problems. Multigrid Methods VI, Springer, Lecture Notes in Computational Science and Engineering, (1999) M. Kaltenbacher, S. Reitzinger, Algebraic Multigrid for Solving Electromechanical Problems. Multigrid Methods VI, Springer, Lecture Notes in Computational Science and Engineering, (1999)
24.
Zurück zum Zitat M. Kaltenbacher, S. Reitzinger, Nonlinear 3D magnetic field computations using Lagrange FE-functions and algebraic multigrid. IEEE Trans. Magn. 38(2), 1489–1496 (2002)CrossRef M. Kaltenbacher, S. Reitzinger, Nonlinear 3D magnetic field computations using Lagrange FE-functions and algebraic multigrid. IEEE Trans. Magn. 38(2), 1489–1496 (2002)CrossRef
25.
Zurück zum Zitat M. Kaltenbacher, S. Reitzinger, J. Schöberl, Algebraic multigrid method for solving 3D nonlinear electrostatic and magnetostatic field problems. IEEE Trans. Magn. 36(4), 1561–1564 (2000)CrossRef M. Kaltenbacher, S. Reitzinger, J. Schöberl, Algebraic multigrid method for solving 3D nonlinear electrostatic and magnetostatic field problems. IEEE Trans. Magn. 36(4), 1561–1564 (2000)CrossRef
26.
Zurück zum Zitat S. Reitzinger, M. Kaltenbacher, Algebraic multigrid methods for magnetostatic field problems. IEEE Trans. Magn. 38(2), 477–480 (2002)CrossRef S. Reitzinger, M. Kaltenbacher, Algebraic multigrid methods for magnetostatic field problems. IEEE Trans. Magn. 38(2), 477–480 (2002)CrossRef
27.
28.
Zurück zum Zitat S. Reitzinger, U. Schreiber, U. van Rienen, Algebraic Multigrid for Complex Symmetric Matrices. Numerical Study, Technical Report 02–01, Johannes Kepler University Linz, SFB: Numerical and Symbolic Scientific Computing, (2002) S. Reitzinger, U. Schreiber, U. van Rienen, Algebraic Multigrid for Complex Symmetric Matrices. Numerical Study, Technical Report 02–01, Johannes Kepler University Linz, SFB: Numerical and Symbolic Scientific Computing, (2002)
29.
Zurück zum Zitat M. Rausch, M. Gebhardt, M. Kaltenbacher, H. Landes, Magnetomechanical field computation of a clinical magnetic resonance imaging (MRI) scanner. COMPEL—Int. J. Comput. Math. Electr. Electron. Eng. 22(3), 576–588 (2003)CrossRef M. Rausch, M. Gebhardt, M. Kaltenbacher, H. Landes, Magnetomechanical field computation of a clinical magnetic resonance imaging (MRI) scanner. COMPEL—Int. J. Comput. Math. Electr. Electron. Eng. 22(3), 576–588 (2003)CrossRef
30.
Zurück zum Zitat G. Haase, M. Kuhn, U. Langer, S. Reitzinger, J. Schöberl, Parallel Maxwell solvers, scientific computing in electrical engineering. U. Van Rienen, M. Günther, and D. Hecht, (eds.), Lecture Notes in Computational Science and Engineering, vol. 18, Springer, (2000) G. Haase, M. Kuhn, U. Langer, S. Reitzinger, J. Schöberl, Parallel Maxwell solvers, scientific computing in electrical engineering. U. Van Rienen, M. Günther, and D. Hecht, (eds.), Lecture Notes in Computational Science and Engineering, vol. 18, Springer, (2000)
31.
32.
Zurück zum Zitat J. Schöberl, S. Zaglmayr, High order Nédélec elements with local complete sequence properties. COMPEL—Int. J. Comput. Math. Electr. Electron. Eng. 24(2), 374–384 (2005)CrossRefMATH J. Schöberl, S. Zaglmayr, High order Nédélec elements with local complete sequence properties. COMPEL—Int. J. Comput. Math. Electr. Electron. Eng. 24(2), 374–384 (2005)CrossRefMATH
33.
Zurück zum Zitat O. Schenk, K. Gärtner, On fast factorization pivoting methods for symmetric indefinite systems. Elec. Trans. Numer. Anal. 23, 158–179 (2006)MATH O. Schenk, K. Gärtner, On fast factorization pivoting methods for symmetric indefinite systems. Elec. Trans. Numer. Anal. 23, 158–179 (2006)MATH
34.
Zurück zum Zitat O. Schenk, K. Gärtner, Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36(1), 204–225 (1999)MathSciNet O. Schenk, K. Gärtner, Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36(1), 204–225 (1999)MathSciNet
35.
Zurück zum Zitat A. Kameari, Improvement of ICCG convergence for thin elements in magnetic field analyses using the finite-element method. IEEE Trans. Magn. 44(6), 178–1181 (2008) A. Kameari, Improvement of ICCG convergence for thin elements in magnetic field analyses using the finite-element method. IEEE Trans. Magn. 44(6), 178–1181 (2008)
36.
Zurück zum Zitat Ch. Chen, O. Bíró, Geometric multigrid with plane smoothing for thin elements in 3-D magnetic fields calculation. IEEE Trans. Magn. 48(2), 443–446 (2012)CrossRef Ch. Chen, O. Bíró, Geometric multigrid with plane smoothing for thin elements in 3-D magnetic fields calculation. IEEE Trans. Magn. 48(2), 443–446 (2012)CrossRef
37.
Zurück zum Zitat A. Hauck, M. Ertl, J. Schöberl, M. Kaltenbacher, Accurate magnetostatic simulation of step-lap joints in transformer cores using anisotropic higher order FEM. COMPEL 32(5), 1581–1595 (2013)CrossRef A. Hauck, M. Ertl, J. Schöberl, M. Kaltenbacher, Accurate magnetostatic simulation of step-lap joints in transformer cores using anisotropic higher order FEM. COMPEL 32(5), 1581–1595 (2013)CrossRef
Metadaten
Titel
Algebraic Solvers
verfasst von
Manfred Kaltenbacher
Copyright-Jahr
2015
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-40170-1_13

Neuer Inhalt