Skip to main content

2020 | OriginalPaper | Buchkapitel

Algo_Seer: System for Extracting and Searching Algorithms in Scholarly Big Data

verfasst von : M. Biradar Sangam, R. Shekhar, Pranayanath Reddy

Erschienen in: Intelligent Communication Technologies and Virtual Mobile Networks

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Algorithms are the crucial and important part for any research and developments. Algorithms are usually published in the scientific publications, journals, conference papers or thesis. Algorithms plays important role especially in the computational and research areas where the researchers and developers look for the innovations. Therefore there is need for a search system which automatically searches for algorithms from the scholarly big data. Algo_Seer is been proposed as part of CiteSeer system which automatically searches for pseudo codes and algorithmic procedures and performs indexing, analysis and ranking to extract the algorithms. This work proposes a search system Algo_Seer which utilizes a novel arrangement of procedures such as rule based method, machine learning methods to recognize, separate and extract the calculated algorithms from the academic reports. Particularly mixture troupe machine learning systems are utilized to obtain the efficient results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang, J.: Mean-variance analysis: a new document ranking theory in information retrieval. In: Proceedings of the 31st European Conference IR Research on Advances in Information Retrieval, pp. 4–16 (2009) Wang, J.: Mean-variance analysis: a new document ranking theory in information retrieval. In: Proceedings of the 31st European Conference IR Research on Advances in Information Retrieval, pp. 4–16 (2009)
2.
Zurück zum Zitat Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)MATH Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)MATH
3.
Zurück zum Zitat Tuarob, S., Tucker, C.S.: Fad or here to stay: predicting product market adoption and longevity using large scale, social media data. In: Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (2013) Tuarob, S., Tucker, C.S.: Fad or here to stay: predicting product market adoption and longevity using large scale, social media data. In: Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (2013)
5.
Zurück zum Zitat Hirschberg, D.S.: A linear space algorithm for computing maximal common subsequences. Commun. ACM 18(6), 341–343 (1975)MathSciNetCrossRef Hirschberg, D.S.: A linear space algorithm for computing maximal common subsequences. Commun. ACM 18(6), 341–343 (1975)MathSciNetCrossRef
6.
Zurück zum Zitat Guha, S., Koudas, N.: Approximating a data stream for querying and estimation: algorithms and performance evaluation. In: Proceedings of the 18th International Conference on Data Engineering, pp. 567–576 (2002) Guha, S., Koudas, N.: Approximating a data stream for querying and estimation: algorithms and performance evaluation. In: Proceedings of the 18th International Conference on Data Engineering, pp. 567–576 (2002)
7.
Zurück zum Zitat Kataria, S., Browuer, W., Mitra, P., Giles, C.L.: Automatic extraction of data points and text blocks from two-dimensional plots in digital documents. In: Proceedings of the 23rd National Conference on Artificial Intelligence, vol. 2, pp. 1169–1174 (2008) Kataria, S., Browuer, W., Mitra, P., Giles, C.L.: Automatic extraction of data points and text blocks from two-dimensional plots in digital documents. In: Proceedings of the 23rd National Conference on Artificial Intelligence, vol. 2, pp. 1169–1174 (2008)
8.
Zurück zum Zitat Sojka, P., Lıska, M.: The art of mathematics retrieval. In: Proceedings of the ACM Symposium on Document Engineering, pp. 57–60 (2011) Sojka, P., Lıska, M.: The art of mathematics retrieval. In: Proceedings of the ACM Symposium on Document Engineering, pp. 57–60 (2011)
9.
Zurück zum Zitat Bhatia, S., Mitra, P.: Summarizing figures, tables, and algorithms in scientific publications to augment search results. ACM Trans. Inf. Syst. 30(1), 3:1–3:24 (2012)CrossRef Bhatia, S., Mitra, P.: Summarizing figures, tables, and algorithms in scientific publications to augment search results. ACM Trans. Inf. Syst. 30(1), 3:1–3:24 (2012)CrossRef
10.
Zurück zum Zitat Liu, Y., Bai, K., Mitra, P., Giles, C.L.: TableSeer: automatic table metadata extraction and searching in digital libraries. In: Proceedings of the 7th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 91–100 (2007) Liu, Y., Bai, K., Mitra, P., Giles, C.L.: TableSeer: automatic table metadata extraction and searching in digital libraries. In: Proceedings of the 7th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 91–100 (2007)
11.
Zurück zum Zitat Hearst, M.A., Divoli, A., Guturu, H., Ksikes, A., Nakov, P., Wooldridge, M.A., Ye, J.: BioText search engine: beyond abstract search. Bioinformatics 23(16), 2196–2197 (2007)CrossRef Hearst, M.A., Divoli, A., Guturu, H., Ksikes, A., Nakov, P., Wooldridge, M.A., Ye, J.: BioText search engine: beyond abstract search. Bioinformatics 23(16), 2196–2197 (2007)CrossRef
12.
Zurück zum Zitat Hassan, T.: Object-level document analysis of PDF files. In: Proceedings of the 9th ACM Symposium on Document Engineering, pp. 47–55 (2009) Hassan, T.: Object-level document analysis of PDF files. In: Proceedings of the 9th ACM Symposium on Document Engineering, pp. 47–55 (2009)
Metadaten
Titel
Algo_Seer: System for Extracting and Searching Algorithms in Scholarly Big Data
verfasst von
M. Biradar Sangam
R. Shekhar
Pranayanath Reddy
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-28364-3_11