Skip to main content
Erschienen in: Journal of Electronic Materials 4/2021

29.01.2021 | Original Research Article

Algorithmic Approach of Electrically Doped Single-walled Cytosine Nanotube-based Biomolecular Logic Gate: A First Principle Paradigm

verfasst von: Debarati Dey, Pradipta Roy, Debashis De

Erschienen in: Journal of Electronic Materials | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biomolecular modeling and its associated analytical software simulation tools have a significant role in the rapid progress of bio-inspired semiconductor technologies. This paper presents the implementation of logic gates using molecular modeling of a cytosine-based single-walled nanotube. Density functional theory in and the nonequilibrium Green’s function-based first-principles approach are used to perform the quantum mechanical calculations for the electronic transmission within the nanotube. The gated cytosine single-walled nanotube shows high current-voltage response during room-temperature operation where the electrode voltage is kept at ± 0.02 V. This is a first attempt towards the circuit-level modeling of logic gates using a cytosine nanotube. The quantum transport phenomenon of this analytical model is investigated using an atomistic software simulation technique. The basic logic gates and XNOR gate are implemented with the study of the current-voltage characteristics. The maximum current observed during the simulation process is 52.6 μA. Moreover, the local device density at different energy levels proves the candidature of cytosine nanotubes as logic gates. The transmission spectrum analysis also confirms the high channel conductivity at the central scattering region of the nanotube.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Xu, C. Fang, B. Cui, G. Ji, Y. Zhai, and D. Liu, Y. Xu, C. Fang, B. Cui, G. Ji, Y. Zhai, and D. Liu, Gated electronic currents modulation and designs of logic gates with single molecular field effect transistors Appl. Phys. Lett., 2011, 99(4), p 043304.CrossRef Y. Xu, C. Fang, B. Cui, G. Ji, Y. Zhai, and D. Liu, Y. Xu, C. Fang, B. Cui, G. Ji, Y. Zhai, and D. Liu, Gated electronic currents modulation and designs of logic gates with single molecular field effect transistors Appl. Phys. Lett., 2011, 99(4), p 043304.CrossRef
2.
Zurück zum Zitat M.A. Reed, and J.M. Tour, M.A. Reed, and J.M. Tour, Computing with molecules Sci. Am., 2000, 282(6), p 86.CrossRef M.A. Reed, and J.M. Tour, M.A. Reed, and J.M. Tour, Computing with molecules Sci. Am., 2000, 282(6), p 86.CrossRef
3.
Zurück zum Zitat Y. Chen, G.Y. Jung, D.A. Ohlberg, X. Li, D.R. Stewart, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, and R.S. Williams, Y. Chen, G.Y. Jung, D.A. Ohlberg, X. Li, D.R. Stewart, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, and R.S. Williams, Nanoscale molecular-switch crossbar circuits Nanotechnology, 2003, 14(4), p 462.CrossRef Y. Chen, G.Y. Jung, D.A. Ohlberg, X. Li, D.R. Stewart, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, and R.S. Williams, Y. Chen, G.Y. Jung, D.A. Ohlberg, X. Li, D.R. Stewart, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, and R.S. Williams, Nanoscale molecular-switch crossbar circuits Nanotechnology, 2003, 14(4), p 462.CrossRef
4.
Zurück zum Zitat C. Zhang, M.H. Du, H.P. Cheng, X.G. Zhang, A.E. Roitberg, and J.L. Krause, C. Zhang, M.H. Du, H.P. Cheng, X.G. Zhang, A.E. Roitberg, and J.L. Krause, Coherent electron transport through an azobenzene molecule: a light-driven molecular switch Phy. Rev. Lett., 2004, 92(15), p 158301.CrossRef C. Zhang, M.H. Du, H.P. Cheng, X.G. Zhang, A.E. Roitberg, and J.L. Krause, C. Zhang, M.H. Du, H.P. Cheng, X.G. Zhang, A.E. Roitberg, and J.L. Krause, Coherent electron transport through an azobenzene molecule: a light-driven molecular switch Phy. Rev. Lett., 2004, 92(15), p 158301.CrossRef
5.
Zurück zum Zitat A. Okamoto, K. Tanaka, and I. Saito, A. Okamoto, K. Tanaka, and I. Saito, DNA logic gates J. Am. Chem. Soc., 2004, 126(30), p 9458.CrossRef A. Okamoto, K. Tanaka, and I. Saito, A. Okamoto, K. Tanaka, and I. Saito, DNA logic gates J. Am. Chem. Soc., 2004, 126(30), p 9458.CrossRef
6.
Zurück zum Zitat Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro, Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro, Programmable and autonomous computing machine made of biomolecules Nature, 2001, 414(6862), p 430.CrossRef Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro, Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro, Programmable and autonomous computing machine made of biomolecules Nature, 2001, 414(6862), p 430.CrossRef
7.
Zurück zum Zitat Y. Benenson, R. Adar, T. Paz-Elizur, Z. Livneh, and E. Shapiro, Y. Benenson, R. Adar, T. Paz-Elizur, Z. Livneh, and E. Shapiro, DNA molecule provides a computing machine with both data and fuel Proc. Natl. Acad. Sci., 2003, 100(5), p 2191.CrossRef Y. Benenson, R. Adar, T. Paz-Elizur, Z. Livneh, and E. Shapiro, Y. Benenson, R. Adar, T. Paz-Elizur, Z. Livneh, and E. Shapiro, DNA molecule provides a computing machine with both data and fuel Proc. Natl. Acad. Sci., 2003, 100(5), p 2191.CrossRef
8.
Zurück zum Zitat P. Roy, D. Dey, and D. De, P. Roy, D. Dey, and D. De, First principle approach towards logic design using hydrogen-doped single-strand DNA IET Nanobiotechnol., 2018, 13(1), p 77.CrossRef P. Roy, D. Dey, and D. De, P. Roy, D. Dey, and D. De, First principle approach towards logic design using hydrogen-doped single-strand DNA IET Nanobiotechnol., 2018, 13(1), p 77.CrossRef
9.
Zurück zum Zitat K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori, and M. Hagiya, K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori, and M. Hagiya, Molecular computation by DNA hairpin formation Science, 2000, 288(5469), p 1223.CrossRef K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori, and M. Hagiya, K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori, and M. Hagiya, Molecular computation by DNA hairpin formation Science, 2000, 288(5469), p 1223.CrossRef
10.
Zurück zum Zitat A.S. Iyer, and K. Paul, A.S. Iyer, and K. Paul, Self-assembly: a review of scope and applications IET Nanobiotechnol., 2015, 9(3), p 122.CrossRef A.S. Iyer, and K. Paul, A.S. Iyer, and K. Paul, Self-assembly: a review of scope and applications IET Nanobiotechnol., 2015, 9(3), p 122.CrossRef
11.
Zurück zum Zitat M.N. Stojanovic, T.E. Mitchell, and D. Stefanovic, M.N. Stojanovic, T.E. Mitchell, and D. Stefanovic, Deoxyribozyme-based logic gates J. Am. Chem. Soc., 2002, 124(14), p 3555.CrossRef M.N. Stojanovic, T.E. Mitchell, and D. Stefanovic, M.N. Stojanovic, T.E. Mitchell, and D. Stefanovic, Deoxyribozyme-based logic gates J. Am. Chem. Soc., 2002, 124(14), p 3555.CrossRef
12.
Zurück zum Zitat P. Roy, D. Dey, S. Sinha, D. De, in Bio-Inspired Computing: Theories and Applications (BIC-TA) 7th International Conference Proceedings (2012), p. 355. P. Roy, D. Dey, S. Sinha, D. De, in Bio-Inspired Computing: Theories and Applications (BIC-TA) 7th International Conference Proceedings (2012), p. 355.
13.
Zurück zum Zitat R. Orbach, F. Remacle, R.D. Levine, and I. Willner, R. Orbach, F. Remacle, R.D. Levine, and I. Willner, DNAzyme-based 2:1 and 4:1 multiplexers and 1:2 demultiplexer Chem. Sci., 2014, 5(3), p 1074.CrossRef R. Orbach, F. Remacle, R.D. Levine, and I. Willner, R. Orbach, F. Remacle, R.D. Levine, and I. Willner, DNAzyme-based 2:1 and 4:1 multiplexers and 1:2 demultiplexer Chem. Sci., 2014, 5(3), p 1074.CrossRef
14.
Zurück zum Zitat P. Roy, S. Sinha, and D. De, P. Roy, S. Sinha, and D. De, Algorithmic approach for DNA based multiplexer design J. Bioinf. Intell. Control, 2014, 3(3), p 179.CrossRef P. Roy, S. Sinha, and D. De, P. Roy, S. Sinha, and D. De, Algorithmic approach for DNA based multiplexer design J. Bioinf. Intell. Control, 2014, 3(3), p 179.CrossRef
15.
Zurück zum Zitat A. Sarker, H.M.H. Babu, and M.M.R. Sarker, A. Sarker, H.M.H. Babu, and M.M.R. Sarker, Design of a DNA-based reversible arithmetic and logic unit IET Nanobiotechnol., 2015, 9(4), p 226.CrossRef A. Sarker, H.M.H. Babu, and M.M.R. Sarker, A. Sarker, H.M.H. Babu, and M.M.R. Sarker, Design of a DNA-based reversible arithmetic and logic unit IET Nanobiotechnol., 2015, 9(4), p 226.CrossRef
16.
Zurück zum Zitat M. Zeng, L. Shen, H. Su, C. Zhang, and Y. Feng, M. Zeng, L. Shen, H. Su, C. Zhang, and Y. Feng, Graphene-based spin logic gates Appl. Phys. Lett., 2011, 98, p 092110.CrossRef M. Zeng, L. Shen, H. Su, C. Zhang, and Y. Feng, M. Zeng, L. Shen, H. Su, C. Zhang, and Y. Feng, Graphene-based spin logic gates Appl. Phys. Lett., 2011, 98, p 092110.CrossRef
17.
Zurück zum Zitat P. Roy, D. Dey, D. De, in Nanomaterials and Nanotechnology (NANO-15) 3rd International Conference Proceedings (2015), p. 225. P. Roy, D. Dey, D. De, in Nanomaterials and Nanotechnology (NANO-15) 3rd International Conference Proceedings (2015), p. 225.
18.
Zurück zum Zitat D. Dey, P. Roy, and D. De, D. Dey, P. Roy, and D. De, Nanoscale modeling of molecular nano Bio p-i-n tunnel FET with catalytic effect of iron nanofiber J. Nanoeng. Nanomanuf., 2016, 6(1), p 9–14.CrossRef D. Dey, P. Roy, and D. De, D. Dey, P. Roy, and D. De, Nanoscale modeling of molecular nano Bio p-i-n tunnel FET with catalytic effect of iron nanofiber J. Nanoeng. Nanomanuf., 2016, 6(1), p 9–14.CrossRef
19.
Zurück zum Zitat D. Dey, P. Roy, D. De, in VLSI Design and Test (VDAT) 19th IEEE International Symposium Proceedings (2015), p. 1–6. D. Dey, P. Roy, D. De, in VLSI Design and Test (VDAT) 19th IEEE International Symposium Proceedings (2015), p. 1–6.
20.
Zurück zum Zitat M.S. Daliri, K. Navi, R.F. Mirzaee, S.S. Daliri, and N. Bagherzadeh, M.S. Daliri, K. Navi, R.F. Mirzaee, S.S. Daliri, and N. Bagherzadeh, A new approach for designing compressors with a new hardware-friendly mathematical method for multi-input XOR gates IET Circuits Dev. Syst., 2017, 11(1), p 46.CrossRef M.S. Daliri, K. Navi, R.F. Mirzaee, S.S. Daliri, and N. Bagherzadeh, M.S. Daliri, K. Navi, R.F. Mirzaee, S.S. Daliri, and N. Bagherzadeh, A new approach for designing compressors with a new hardware-friendly mathematical method for multi-input XOR gates IET Circuits Dev. Syst., 2017, 11(1), p 46.CrossRef
21.
Zurück zum Zitat D. Dey, P. Roy, and D. De, D. Dey, P. Roy, and D. De, Electronic characterization of atomistic modeling based electrically doped nano bio pin FET IET Comp. Digital Tech., 2016, 10(5), p 273.CrossRef D. Dey, P. Roy, and D. De, D. Dey, P. Roy, and D. De, Electronic characterization of atomistic modeling based electrically doped nano bio pin FET IET Comp. Digital Tech., 2016, 10(5), p 273.CrossRef
22.
Zurück zum Zitat D. Dey, P. Roy, T. Purkayastha, and D. De, D. Dey, P. Roy, T. Purkayastha, and D. De, A first principle approach to design gated pin nanodiode J. Nano Res, 2016, 36, p 16.CrossRef D. Dey, P. Roy, T. Purkayastha, and D. De, D. Dey, P. Roy, T. Purkayastha, and D. De, A first principle approach to design gated pin nanodiode J. Nano Res, 2016, 36, p 16.CrossRef
23.
Zurück zum Zitat D. Dey, P. Roy, and D. De, D. Dey, P. Roy, and D. De, Atomic Scale Modeling of Electrically doped p-i-n FET from Adenine based Single Wall Nanotube J. Mol. Graphics Modell., 2017, 76, p 118–127.CrossRef D. Dey, P. Roy, and D. De, D. Dey, P. Roy, and D. De, Atomic Scale Modeling of Electrically doped p-i-n FET from Adenine based Single Wall Nanotube J. Mol. Graphics Modell., 2017, 76, p 118–127.CrossRef
24.
Zurück zum Zitat D. Dey, and D. De, D. Dey, and D. De, A first principle approach toward circuit level modeling of electrically doped gated diode from single wall thymine nanotube-like structure Microsyst. Technol., 2018, 24(7), p 3107–3121.CrossRef D. Dey, and D. De, D. Dey, and D. De, A first principle approach toward circuit level modeling of electrically doped gated diode from single wall thymine nanotube-like structure Microsyst. Technol., 2018, 24(7), p 3107–3121.CrossRef
25.
Zurück zum Zitat D. Dey, D. De, F. Ghaemi, A. Ahmadian, L. C. Abdullah, Circuit level modeling of electrically doped adenine–thymine nanotube based field effect transistor. IEEE Access, 8, p. 6168-6176 (2019). D. Dey, D. De, F. Ghaemi, A. Ahmadian, L. C. Abdullah, Circuit level modeling of electrically doped adenine–thymine nanotube based field effect transistor. IEEE Access, 8, p. 6168-6176 (2019).
26.
Zurück zum Zitat D. Fan, K. Wang, J. Zhu, Y. Xia, Y. Han, Y. Liu, and E. Wang, D. Fan, K. Wang, J. Zhu, Y. Xia, Y. Han, Y. Liu, and E. Wang, DNA-based visual majority logic gate with one-vote veto function Chem. Sci., 2015, 6(3), p 1973–1978.CrossRef D. Fan, K. Wang, J. Zhu, Y. Xia, Y. Han, Y. Liu, and E. Wang, D. Fan, K. Wang, J. Zhu, Y. Xia, Y. Han, Y. Liu, and E. Wang, DNA-based visual majority logic gate with one-vote veto function Chem. Sci., 2015, 6(3), p 1973–1978.CrossRef
27.
Zurück zum Zitat P. Wolski, and K. Nieszporek, P. Wolski, and K. Nieszporek, Carbon nanotubes and short cytosine-rich telomeric DNA oligomeres as platforms for controlled release of doxorubicin—a molecular dynamics study Int. J. Mol. Sci., 2010, 21(10), p 3619.CrossRef P. Wolski, and K. Nieszporek, P. Wolski, and K. Nieszporek, Carbon nanotubes and short cytosine-rich telomeric DNA oligomeres as platforms for controlled release of doxorubicin—a molecular dynamics study Int. J. Mol. Sci., 2010, 21(10), p 3619.CrossRef
28.
Zurück zum Zitat T. Panczyk, P. Wojton, and P. Wolski, T. Panczyk, P. Wojton, and P. Wolski, Molecular dynamics study of the interaction of carbon nanotubes with Telomeric DNA fragment containing noncanonical G-Quadruplex and i-Motif forms Int. J. Mol. Sci., 2020, 21(6), p 1925.CrossRef T. Panczyk, P. Wojton, and P. Wolski, T. Panczyk, P. Wojton, and P. Wolski, Molecular dynamics study of the interaction of carbon nanotubes with Telomeric DNA fragment containing noncanonical G-Quadruplex and i-Motif forms Int. J. Mol. Sci., 2020, 21(6), p 1925.CrossRef
29.
Zurück zum Zitat M.M.F.A. Baig, W.F. Lai, M.F. Akhtar, A. Saleem, R. Mikrani, M.A. Farooq, S.A. Ahmed, A. Tahir, M. Naveed, M. Abbas, and M.T. Ansari, M.M.F.A. Baig, W.F. Lai, M.F. Akhtar, A. Saleem, R. Mikrani, M.A. Farooq, S.A. Ahmed, A. Tahir, M. Naveed, M. Abbas, and M.T. Ansari, Targeting folate receptors (α1) to internalize the bleomycin loaded DNA-nanotubes into prostate cancer xenograft CWR22R cells J. Mol. Liq., 2020, 316, p 113785.CrossRef M.M.F.A. Baig, W.F. Lai, M.F. Akhtar, A. Saleem, R. Mikrani, M.A. Farooq, S.A. Ahmed, A. Tahir, M. Naveed, M. Abbas, and M.T. Ansari, M.M.F.A. Baig, W.F. Lai, M.F. Akhtar, A. Saleem, R. Mikrani, M.A. Farooq, S.A. Ahmed, A. Tahir, M. Naveed, M. Abbas, and M.T. Ansari, Targeting folate receptors (α1) to internalize the bleomycin loaded DNA-nanotubes into prostate cancer xenograft CWR22R cells J. Mol. Liq., 2020, 316, p 113785.CrossRef
30.
Zurück zum Zitat A. Rafati, A. Zarrabi, and P. Gill, A. Rafati, A. Zarrabi, and P. Gill, DNA nanotubes coupled with magnetic nanoparticles as a platform for colorimetric biosensors Nanomed. Res. J., 2020, 5(1), p 63. A. Rafati, A. Zarrabi, and P. Gill, A. Rafati, A. Zarrabi, and P. Gill, DNA nanotubes coupled with magnetic nanoparticles as a platform for colorimetric biosensors Nanomed. Res. J., 2020, 5(1), p 63.
31.
Zurück zum Zitat F. Tardani, S. Sarti, S. Sennato, M. Leo, P. Filetici, S. Casciardi, P.G. Schiavi, and F. Bordi, F. Tardani, S. Sarti, S. Sennato, M. Leo, P. Filetici, S. Casciardi, P.G. Schiavi, and F. Bordi, Experimental evidence of single-stranded DNA Adsorption on multiwalled carbon nanotubes J. Phys. Chem. B, 2020, 124(12), p 2514.CrossRef F. Tardani, S. Sarti, S. Sennato, M. Leo, P. Filetici, S. Casciardi, P.G. Schiavi, and F. Bordi, F. Tardani, S. Sarti, S. Sennato, M. Leo, P. Filetici, S. Casciardi, P.G. Schiavi, and F. Bordi, Experimental evidence of single-stranded DNA Adsorption on multiwalled carbon nanotubes J. Phys. Chem. B, 2020, 124(12), p 2514.CrossRef
33.
Zurück zum Zitat K. Navi, M. Rashtian, A. Khatir, P. Keshavarzian, and O. Hashemipour, K. Navi, M. Rashtian, A. Khatir, P. Keshavarzian, and O. Hashemipour, High speed capacitor-inverter based carbon nanotube full adder Nanoscale Res. Lett., 2010, 5(5), p 859.CrossRef K. Navi, M. Rashtian, A. Khatir, P. Keshavarzian, and O. Hashemipour, K. Navi, M. Rashtian, A. Khatir, P. Keshavarzian, and O. Hashemipour, High speed capacitor-inverter based carbon nanotube full adder Nanoscale Res. Lett., 2010, 5(5), p 859.CrossRef
34.
Zurück zum Zitat S. Choudhary, and A. Chauhan, S. Choudhary, and A. Chauhan, First-principles study of spin transport in CrO2-SiCNT-CrO2 magnetic tunnel junction J. Comput. Electron., 2015, 14(3), p 852–856.CrossRef S. Choudhary, and A. Chauhan, S. Choudhary, and A. Chauhan, First-principles study of spin transport in CrO2-SiCNT-CrO2 magnetic tunnel junction J. Comput. Electron., 2015, 14(3), p 852–856.CrossRef
35.
Zurück zum Zitat S. Choudhary, and M. Varshney, S. Choudhary, and M. Varshney, First-principles study of spin transport in CrO2–CNT–CrO2 magnetic tunnel junction J. Superconduct. Novel Magn., 2015, 28(10), p 3141.CrossRef S. Choudhary, and M. Varshney, S. Choudhary, and M. Varshney, First-principles study of spin transport in CrO2–CNT–CrO2 magnetic tunnel junction J. Superconduct. Novel Magn., 2015, 28(10), p 3141.CrossRef
36.
Zurück zum Zitat M. Ghorbani-Asl, P.D. Bristowe, and K. Koziol, M. Ghorbani-Asl, P.D. Bristowe, and K. Koziol, A computational study of the quantum transport properties of a Cu–CNT composite Phys. Chem. Chem. Phys., 2015, 17(28), p 18273–18277.CrossRef M. Ghorbani-Asl, P.D. Bristowe, and K. Koziol, M. Ghorbani-Asl, P.D. Bristowe, and K. Koziol, A computational study of the quantum transport properties of a Cu–CNT composite Phys. Chem. Chem. Phys., 2015, 17(28), p 18273–18277.CrossRef
37.
Zurück zum Zitat M.M. Husain, M.M. Husain, Carbon dioxide adsorption on single walled bamboo-like carbon nanotubes (SWBCNT): a computational study Int. J. Res. Eng. Sci. (IJRES), 2013, 1(2), p 13. M.M. Husain, M.M. Husain, Carbon dioxide adsorption on single walled bamboo-like carbon nanotubes (SWBCNT): a computational study Int. J. Res. Eng. Sci. (IJRES), 2013, 1(2), p 13.
38.
Zurück zum Zitat E. Nadimi, P. Planitz, R. Ottking, K. Wieczorek, and C. Radehaus, E. Nadimi, P. Planitz, R. Ottking, K. Wieczorek, and C. Radehaus, First principle calculation of the leakage current through SiO2 and SiOxNy gate dielectrics in MOSFETs IEEE Trans. Electron Devices, 2010, 57(3), p 690–695.CrossRef E. Nadimi, P. Planitz, R. Ottking, K. Wieczorek, and C. Radehaus, E. Nadimi, P. Planitz, R. Ottking, K. Wieczorek, and C. Radehaus, First principle calculation of the leakage current through SiO2 and SiOxNy gate dielectrics in MOSFETs IEEE Trans. Electron Devices, 2010, 57(3), p 690–695.CrossRef
39.
Zurück zum Zitat S. Datta, S. Datta, Nanoscale device modeling: the Green’s function method Superlattices Microstruct., 2000, 28(4), p 253–278.CrossRef S. Datta, S. Datta, Nanoscale device modeling: the Green’s function method Superlattices Microstruct., 2000, 28(4), p 253–278.CrossRef
42.
Zurück zum Zitat R.K. Ghosh, M. Brahma, and S. Mahapatra, R.K. Ghosh, M. Brahma, and S. Mahapatra, Germanane: A low effective mass and high bandgap 2-D channel material for future FETs IEEE Trans. Electron Devices, 2014, 61(7), p 2309–2315.CrossRef R.K. Ghosh, M. Brahma, and S. Mahapatra, R.K. Ghosh, M. Brahma, and S. Mahapatra, Germanane: A low effective mass and high bandgap 2-D channel material for future FETs IEEE Trans. Electron Devices, 2014, 61(7), p 2309–2315.CrossRef
43.
Zurück zum Zitat S. Caliskan, S. Guner, and O. Gurbuz, S. Caliskan, S. Guner, and O. Gurbuz, Electronic structure properties of doped and imperfect ZnO sheets IEEE Trans. Nanotechnol., 2016, 15(5), p 775.CrossRef S. Caliskan, S. Guner, and O. Gurbuz, S. Caliskan, S. Guner, and O. Gurbuz, Electronic structure properties of doped and imperfect ZnO sheets IEEE Trans. Nanotechnol., 2016, 15(5), p 775.CrossRef
44.
Zurück zum Zitat Q. Wang, J. Dong, M. Wang, Y. Zhou, and C. Zhou, Q. Wang, J. Dong, M. Wang, Y. Zhou, and C. Zhou, DNA-based adaptive plasmonic logic gates Angew. Chem., 2020, 132(35), p 15148.CrossRef Q. Wang, J. Dong, M. Wang, Y. Zhou, and C. Zhou, Q. Wang, J. Dong, M. Wang, Y. Zhou, and C. Zhou, DNA-based adaptive plasmonic logic gates Angew. Chem., 2020, 132(35), p 15148.CrossRef
45.
Zurück zum Zitat T. Chen, X. Fu, Q. Zhang, D. Mao, Y. Song, C. Feng, and X. Zhu, T. Chen, X. Fu, Q. Zhang, D. Mao, Y. Song, C. Feng, and X. Zhu, A DNA logic gate with dual-anchored proximity aptamers for the accurate identification of circulating tumor cells Chem. Commun., 2020, 56, p 6961.CrossRef T. Chen, X. Fu, Q. Zhang, D. Mao, Y. Song, C. Feng, and X. Zhu, T. Chen, X. Fu, Q. Zhang, D. Mao, Y. Song, C. Feng, and X. Zhu, A DNA logic gate with dual-anchored proximity aptamers for the accurate identification of circulating tumor cells Chem. Commun., 2020, 56, p 6961.CrossRef
46.
Zurück zum Zitat X.Y. Zhang, and P. Zhao, X.Y. Zhang, and P. Zhao, Molecular logic gates based on spin caloritronic transport properties of Mn phthalocyanine nanoribbon Phys. Lett. A, 2020, 384(13), p 126256.CrossRef X.Y. Zhang, and P. Zhao, X.Y. Zhang, and P. Zhao, Molecular logic gates based on spin caloritronic transport properties of Mn phthalocyanine nanoribbon Phys. Lett. A, 2020, 384(13), p 126256.CrossRef
47.
Zurück zum Zitat A.K. Manna, M. Sahu, K. Rout, U.K. Das, and G.K. Patra, A.K. Manna, M. Sahu, K. Rout, U.K. Das, and G.K. Patra, A highly selective novel multiple amide based Schiff base optical chemosensor for rapid detection of Cu2+ and its applications in real sample analysis, molecular logic gate and smart phone Microchem. J., 2020, 157, p 104860.CrossRef A.K. Manna, M. Sahu, K. Rout, U.K. Das, and G.K. Patra, A.K. Manna, M. Sahu, K. Rout, U.K. Das, and G.K. Patra, A highly selective novel multiple amide based Schiff base optical chemosensor for rapid detection of Cu2+ and its applications in real sample analysis, molecular logic gate and smart phone Microchem. J., 2020, 157, p 104860.CrossRef
Metadaten
Titel
Algorithmic Approach of Electrically Doped Single-walled Cytosine Nanotube-based Biomolecular Logic Gate: A First Principle Paradigm
verfasst von
Debarati Dey
Pradipta Roy
Debashis De
Publikationsdatum
29.01.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 4/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08739-5

Weitere Artikel der Ausgabe 4/2021

Journal of Electronic Materials 4/2021 Zur Ausgabe

Neuer Inhalt