Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

1. Aligned Nanowire Growth

verfasst von : V. Cientanni, W. I. Milne, M. T. Cole

Erschienen in: Micro and Nanomanufacturing Volume II

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With many thousands of different varieties to date, the nanowire (NW) library continues to grow at pace. With the continued and hastened maturity of nanotechnology, significant advances in materials science have allowed for the rational synthesis of a myriad of NW types of unique electronic and optical properties, allowing for the realisation of a wealth of novel devices, whose use is touted to become increasingly central in a number of emerging technologies. Nanowires, structures defined as having diameters between 1 and 100 nm, provide length scales at which a variety of inherent and unique physical effects come to the fore [1], phenomena which are often size suppressed in their bulk counterparts [2–4]. It is these size-dependent effects that have underpinned the growing interest in the growth and fabrication, at ever more commercial scales, of nanoscale structures. Nevertheless, many of the intrinsic properties of such NWs become largely smeared and often entirely lost when they adopt disordered ensembles. Conversely, ordered and aligned NWs have been shown to retain many such properties, alongside proffering various new properties that manifest on the micro- and even macroscale that would hitherto not occur in their disordered counterparts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hornyak GL (2009) Fundamentals of nanotechnology. Taylor & Francis Group, Boca Raton, FL Hornyak GL (2009) Fundamentals of nanotechnology. Taylor & Francis Group, Boca Raton, FL
2.
Zurück zum Zitat Nalwa HS (2000) Handbook of nanostructured materials and nanotechnology. Academic Press, New York, NY Nalwa HS (2000) Handbook of nanostructured materials and nanotechnology. Academic Press, New York, NY
3.
Zurück zum Zitat Alivisatos P, Barbara PF, Castleman AW, Chang J, Dixon DA, Klein ML, McLendon GL, Miller JS, Ratner MA, Rossky PJ, Stupp SI, Thompson ME (1998) From molecules to materials: current trends and future directions. Adv Mater 10(16):39CrossRef Alivisatos P, Barbara PF, Castleman AW, Chang J, Dixon DA, Klein ML, McLendon GL, Miller JS, Ratner MA, Rossky PJ, Stupp SI, Thompson ME (1998) From molecules to materials: current trends and future directions. Adv Mater 10(16):39CrossRef
4.
Zurück zum Zitat Shalaev VM, Moskovits M (1999) Nanostructured materials: clusters, composites, and thin films. American Chemical Society, Washington, DC Shalaev VM, Moskovits M (1999) Nanostructured materials: clusters, composites, and thin films. American Chemical Society, Washington, DC
5.
Zurück zum Zitat Smijs TG, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl 2011(4):17. Dovepress Smijs TG, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl 2011(4):17. Dovepress
6.
Zurück zum Zitat Suhr J et al (2005) Viscoelasticity in carbon nanotube composites. Nat Mater 4(2):134–137CrossRef Suhr J et al (2005) Viscoelasticity in carbon nanotube composites. Nat Mater 4(2):134–137CrossRef
7.
Zurück zum Zitat Moore GE (1998) Cramming more components onto integrated circuits. Proc IEEE 86(1):4 Moore GE (1998) Cramming more components onto integrated circuits. Proc IEEE 86(1):4
8.
Zurück zum Zitat Ng HT et al (2004) Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett 4(7):1247–1252CrossRef Ng HT et al (2004) Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett 4(7):1247–1252CrossRef
9.
Zurück zum Zitat Huang MH et al (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899CrossRef Huang MH et al (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899CrossRef
10.
Zurück zum Zitat Thelander C et al (2006) Nanowire-based one-dimensional electronics. Mater Today 9(10):28–35CrossRef Thelander C et al (2006) Nanowire-based one-dimensional electronics. Mater Today 9(10):28–35CrossRef
11.
Zurück zum Zitat Law M et al (2005) Nanowire dye-sensitized solar cells. Nat Mater 4(6):455–459CrossRef Law M et al (2005) Nanowire dye-sensitized solar cells. Nat Mater 4(6):455–459CrossRef
12.
Zurück zum Zitat Sun XW, Wang JX (2008) Fast switching electrochromic display using a viologen-modified Zno nanowire array electrode. Nano Lett 8(7):1884–1889CrossRef Sun XW, Wang JX (2008) Fast switching electrochromic display using a viologen-modified Zno nanowire array electrode. Nano Lett 8(7):1884–1889CrossRef
13.
Zurück zum Zitat Patolsky F et al (2004) Electrical detection of single viruses. Proc Natl Acad Sci U S A 101(39):14017–14022CrossRef Patolsky F et al (2004) Electrical detection of single viruses. Proc Natl Acad Sci U S A 101(39):14017–14022CrossRef
14.
Zurück zum Zitat Xia Y et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389CrossRef Xia Y et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389CrossRef
15.
Zurück zum Zitat Wang ZL (2000) Characterizing the structure and properties of individual wire-like nanoentities. Adv Mater 12(17):1295–1298CrossRef Wang ZL (2000) Characterizing the structure and properties of individual wire-like nanoentities. Adv Mater 12(17):1295–1298CrossRef
16.
Zurück zum Zitat De Volder MFL et al (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539CrossRef De Volder MFL et al (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539CrossRef
17.
Zurück zum Zitat Schmidt V et al (2009) Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv Mater 21(25–26):2681–2702CrossRef Schmidt V et al (2009) Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv Mater 21(25–26):2681–2702CrossRef
18.
Zurück zum Zitat Cole MT et al (2014) Ultra-broadband polarisers based on metastable free-standing aligned carbon nanotube membranes. Adv Opt Mater 2(10):929–937CrossRef Cole MT et al (2014) Ultra-broadband polarisers based on metastable free-standing aligned carbon nanotube membranes. Adv Opt Mater 2(10):929–937CrossRef
19.
Zurück zum Zitat Zhang Q et al (2016) In situ fabrication and investigation of nanostructures and nanodevices with a microscope. Chem Soc Rev 45(9):2694–2713CrossRef Zhang Q et al (2016) In situ fabrication and investigation of nanostructures and nanodevices with a microscope. Chem Soc Rev 45(9):2694–2713CrossRef
20.
Zurück zum Zitat Ghoshal T et al (2014) Fabrication of ordered, large scale, horizontally-aligned Si nanowire arrays based on an in situ hard mask block copolymer approach. Adv Mater 26(8):1207–1216CrossRef Ghoshal T et al (2014) Fabrication of ordered, large scale, horizontally-aligned Si nanowire arrays based on an in situ hard mask block copolymer approach. Adv Mater 26(8):1207–1216CrossRef
21.
Zurück zum Zitat Wagner RS, Ellis WC (1964) Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4(5):89–90CrossRef Wagner RS, Ellis WC (1964) Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4(5):89–90CrossRef
22.
Zurück zum Zitat Ho T-W, Hong FC-N (2012) A reliable method to grow vertically-aligned silicon nanowires by a novel ramp-cooling process. Appl Surf Sci 258(20):7989–7996CrossRef Ho T-W, Hong FC-N (2012) A reliable method to grow vertically-aligned silicon nanowires by a novel ramp-cooling process. Appl Surf Sci 258(20):7989–7996CrossRef
23.
Zurück zum Zitat Hochbaum AI et al (2005) Controlled growth of Si nanowire arrays for device integration. Nano Lett 5(3):457–460CrossRef Hochbaum AI et al (2005) Controlled growth of Si nanowire arrays for device integration. Nano Lett 5(3):457–460CrossRef
24.
Zurück zum Zitat Wacaser BA et al (2009) Growth system, structure, and doping of aluminum-seeded epitaxial silicon nanowires. Nano Lett 9(9):3296–3301CrossRef Wacaser BA et al (2009) Growth system, structure, and doping of aluminum-seeded epitaxial silicon nanowires. Nano Lett 9(9):3296–3301CrossRef
25.
Zurück zum Zitat Zhang R-Q, Lifshitz Y, Lee S-T (2003) Oxide-assisted growth of semiconducting nanowires. Adv Mater 15(7–8):635–640CrossRef Zhang R-Q, Lifshitz Y, Lee S-T (2003) Oxide-assisted growth of semiconducting nanowires. Adv Mater 15(7–8):635–640CrossRef
26.
Zurück zum Zitat Yan HF et al (2000) Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism. Chem Phys Lett 323(3–4):224–228CrossRef Yan HF et al (2000) Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism. Chem Phys Lett 323(3–4):224–228CrossRef
27.
Zurück zum Zitat Wang Y et al (2006) Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat Nanotechnol 1(3):186–189CrossRef Wang Y et al (2006) Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat Nanotechnol 1(3):186–189CrossRef
28.
Zurück zum Zitat Thongmee S et al (2009) Fabrication and magnetic properties of metallic nanowires via aao templates. J Magnetism Magn Mater 321(18):2712–2716CrossRef Thongmee S et al (2009) Fabrication and magnetic properties of metallic nanowires via aao templates. J Magnetism Magn Mater 321(18):2712–2716CrossRef
29.
Zurück zum Zitat Cantu-Valle J et al (2015) Mapping the magnetic and crystal structure in cobalt nanowires. J Appl Phys 118(2):024302CrossRef Cantu-Valle J et al (2015) Mapping the magnetic and crystal structure in cobalt nanowires. J Appl Phys 118(2):024302CrossRef
30.
Zurück zum Zitat Cui F et al (2015) Synthesis of ultrathin copper nanowires using tris(trimethylsilyl)silane for high-performance and low-haze transparent conductors. Nano Lett 15(11):7610–7615CrossRef Cui F et al (2015) Synthesis of ultrathin copper nanowires using tris(trimethylsilyl)silane for high-performance and low-haze transparent conductors. Nano Lett 15(11):7610–7615CrossRef
31.
Zurück zum Zitat Haehnel V et al (2010) Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes. Acta Mater 58(7):2330–2337CrossRef Haehnel V et al (2010) Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes. Acta Mater 58(7):2330–2337CrossRef
32.
Zurück zum Zitat Kim J et al (2016) Organic devices based on nickel nanowires transparent electrode. Sci Rep 6:19813CrossRef Kim J et al (2016) Organic devices based on nickel nanowires transparent electrode. Sci Rep 6:19813CrossRef
33.
Zurück zum Zitat Zach MP, Ng KH, Penner RM (2000) Molybdenum nanowires by electrodeposition. Science 290(5499):2120–2123CrossRef Zach MP, Ng KH, Penner RM (2000) Molybdenum nanowires by electrodeposition. Science 290(5499):2120–2123CrossRef
34.
Zurück zum Zitat Lee JW et al (2010) Single crystalline aluminum nanowires with ideal resistivity. Scr Mater 63(10):1009–1012CrossRef Lee JW et al (2010) Single crystalline aluminum nanowires with ideal resistivity. Scr Mater 63(10):1009–1012CrossRef
35.
Zurück zum Zitat Dou R, Derby B (2008) The growth and mechanical properties of gold nanowires. MRS Online Proceedings Library Archive. 1086: pp 1086–U08-01 (6 pages) Dou R, Derby B (2008) The growth and mechanical properties of gold nanowires. MRS Online Proceedings Library Archive. 1086: pp 1086–U08-01 (6 pages)
36.
Zurück zum Zitat Cao Y et al (2006) A technique for controlling the alignment of silver nanowires with an electric field. Nanotechnology 17(9):2378CrossRef Cao Y et al (2006) A technique for controlling the alignment of silver nanowires with an electric field. Nanotechnology 17(9):2378CrossRef
37.
Zurück zum Zitat Chen YJ et al (2007) Controlled growth of zinc nanowires. Mater Lett 61(1):144–147CrossRef Chen YJ et al (2007) Controlled growth of zinc nanowires. Mater Lett 61(1):144–147CrossRef
38.
Zurück zum Zitat Djenizian T et al (2008) Electrochemical fabrication of tin nanowires: a short review. C R Chim 11(9):995–1003CrossRef Djenizian T et al (2008) Electrochemical fabrication of tin nanowires: a short review. C R Chim 11(9):995–1003CrossRef
39.
Zurück zum Zitat Yanson AI, Yanson IK, van Ruitenbeek JM (1999) Observation of shell structure in sodium nanowires. Nature 400(6740):144–146CrossRef Yanson AI, Yanson IK, van Ruitenbeek JM (1999) Observation of shell structure in sodium nanowires. Nature 400(6740):144–146CrossRef
40.
Zurück zum Zitat Li W et al (2007) Magnesium nanowires: enhanced kinetics for hydrogen absorption and desorption. J Am Chem Soc 129(21):6710–6711CrossRef Li W et al (2007) Magnesium nanowires: enhanced kinetics for hydrogen absorption and desorption. J Am Chem Soc 129(21):6710–6711CrossRef
41.
Zurück zum Zitat Thongmee S et al (2009) Unique nanostructures in nico alloy nanowires. Acta Mater 57(8):2482–2487CrossRef Thongmee S et al (2009) Unique nanostructures in nico alloy nanowires. Acta Mater 57(8):2482–2487CrossRef
42.
Zurück zum Zitat Hou H, Hamilton RF (2015) Free-standing niti alloy nanowires fabricated by nanoskiving. Nanoscale 7(32):13373–13378CrossRef Hou H, Hamilton RF (2015) Free-standing niti alloy nanowires fabricated by nanoskiving. Nanoscale 7(32):13373–13378CrossRef
43.
Zurück zum Zitat Kumar S, Saini D (2013) Large-scale synthesis of Au–Ni alloy nanowires using electrochemical deposition. Appl Nanosci 3(2):101–107CrossRef Kumar S, Saini D (2013) Large-scale synthesis of Au–Ni alloy nanowires using electrochemical deposition. Appl Nanosci 3(2):101–107CrossRef
44.
Zurück zum Zitat Wang CZ et al (2002) Structure and magnetic property of Ni-Cu alloy nanowires electrodeposited into the pores of anodic alumina membranes. J Phys D Appl Phys 35(8):738CrossRef Wang CZ et al (2002) Structure and magnetic property of Ni-Cu alloy nanowires electrodeposited into the pores of anodic alumina membranes. J Phys D Appl Phys 35(8):738CrossRef
45.
Zurück zum Zitat Liao Y et al (2016) Composition-tunable ptcu alloy nanowires and electrocatalytic synergy for methanol oxidation reaction. J Phys Chem C 120(19):10476–10484CrossRef Liao Y et al (2016) Composition-tunable ptcu alloy nanowires and electrocatalytic synergy for methanol oxidation reaction. J Phys Chem C 120(19):10476–10484CrossRef
46.
Zurück zum Zitat Kornienko N et al (2015) Solution phase synthesis of indium gallium phosphide alloy nanowires. ACS Nano 9(4):3951–3960CrossRef Kornienko N et al (2015) Solution phase synthesis of indium gallium phosphide alloy nanowires. ACS Nano 9(4):3951–3960CrossRef
47.
Zurück zum Zitat Wang X et al (2016) Preparation and characterization of Y-Fe alloy nanowires by template-assisted electrodeposition from aqueous solution. J Nanopart Res 18(3):1–12CrossRef Wang X et al (2016) Preparation and characterization of Y-Fe alloy nanowires by template-assisted electrodeposition from aqueous solution. J Nanopart Res 18(3):1–12CrossRef
48.
Zurück zum Zitat Dawson K, Riordan AO (2011) Towards nanowire (bio) sensors. J Phys Conf Series 307(1):012004CrossRef Dawson K, Riordan AO (2011) Towards nanowire (bio) sensors. J Phys Conf Series 307(1):012004CrossRef
49.
Zurück zum Zitat Zhang Y et al (2014) New gold nanostructures for sensor applications: a review. Materials 7(7):5169CrossRef Zhang Y et al (2014) New gold nanostructures for sensor applications: a review. Materials 7(7):5169CrossRef
50.
Zurück zum Zitat Chi S, Farias SL, Cammarata RC (2012) Synthesis of vertically aligned gold nanowire-ferromagnetic metal matrix composites. ECS Trans 41(35):119–122CrossRef Chi S, Farias SL, Cammarata RC (2012) Synthesis of vertically aligned gold nanowire-ferromagnetic metal matrix composites. ECS Trans 41(35):119–122CrossRef
51.
Zurück zum Zitat He J et al (2013) Forest of gold nanowires: a new type of nanocrystal growth. ACS Nano 7(3):2733–2740CrossRef He J et al (2013) Forest of gold nanowires: a new type of nanocrystal growth. ACS Nano 7(3):2733–2740CrossRef
52.
Zurück zum Zitat Kline TR et al (2006) Template-grown metal nanowires. Inorg Chem 45(19):7555–7565CrossRef Kline TR et al (2006) Template-grown metal nanowires. Inorg Chem 45(19):7555–7565CrossRef
53.
Zurück zum Zitat Liu J et al (2006) Electrochemical fabrication of single-crystalline and polycrystalline au nanowires: the influence of deposition parameters. Nanotechnology 17(8):1922CrossRef Liu J et al (2006) Electrochemical fabrication of single-crystalline and polycrystalline au nanowires: the influence of deposition parameters. Nanotechnology 17(8):1922CrossRef
54.
Zurück zum Zitat Reinhardt HM, Bücker K, Hampp NA (2015) Directed assembly of gold nanowires on silicon via reorganization and simultaneous fusion of randomly distributed gold nanoparticles. Opt Express 23(9):11965–11974CrossRef Reinhardt HM, Bücker K, Hampp NA (2015) Directed assembly of gold nanowires on silicon via reorganization and simultaneous fusion of randomly distributed gold nanoparticles. Opt Express 23(9):11965–11974CrossRef
55.
Zurück zum Zitat Reynes O, Demoustier-Champagne S (2005) Template electrochemical growth of polypyrrole and gold-polypyrrole-gold nanowire arrays. J Electrochem Soc 152(9):D130–D135CrossRef Reynes O, Demoustier-Champagne S (2005) Template electrochemical growth of polypyrrole and gold-polypyrrole-gold nanowire arrays. J Electrochem Soc 152(9):D130–D135CrossRef
56.
Zurück zum Zitat Shi S et al (2011) Fabrication of periodic metal nanowires with microscale mold by nanoimprint lithography. ACS Appl Mater Interfaces 3(11):4174–4179CrossRef Shi S et al (2011) Fabrication of periodic metal nanowires with microscale mold by nanoimprint lithography. ACS Appl Mater Interfaces 3(11):4174–4179CrossRef
57.
Zurück zum Zitat Zheng L, Li S, Burke PJ (2004) Self-assembled gold nanowires from nanoparticles: an electronic route towards DNA nanosensors. Proc. SPIE 5515:117–124 Zheng L, Li S, Burke PJ (2004) Self-assembled gold nanowires from nanoparticles: an electronic route towards DNA nanosensors. Proc. SPIE 5515:117–124
58.
Zurück zum Zitat Venkatesh R et al (2015) Directed assembly of ultrathin gold nanowires over large area by dielectrophoresis. Langmuir 31(33):9246–9252CrossRef Venkatesh R et al (2015) Directed assembly of ultrathin gold nanowires over large area by dielectrophoresis. Langmuir 31(33):9246–9252CrossRef
59.
Zurück zum Zitat Zhang M et al (2013) Controllable growth of gold nanowires and nanoactuators via high-frequency Ac electrodeposition. Electrochem Commun 27:133–136CrossRef Zhang M et al (2013) Controllable growth of gold nanowires and nanoactuators via high-frequency Ac electrodeposition. Electrochem Commun 27:133–136CrossRef
60.
Zurück zum Zitat Lu L et al (2012) Direct synthesis of vertically aligned ZnO nanowires on FTO substrates using a CVD method and the improvement of photovoltaic performance. Nanoscale Res Lett 7(1):1–8CrossRef Lu L et al (2012) Direct synthesis of vertically aligned ZnO nanowires on FTO substrates using a CVD method and the improvement of photovoltaic performance. Nanoscale Res Lett 7(1):1–8CrossRef
61.
Zurück zum Zitat Yang R et al (2007) Silver nanowires prepared by modified AAO template method. Mater Lett 61(3):900–903CrossRef Yang R et al (2007) Silver nanowires prepared by modified AAO template method. Mater Lett 61(3):900–903CrossRef
62.
Zurück zum Zitat Sun Y et al (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14(11):4736–4745CrossRef Sun Y et al (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14(11):4736–4745CrossRef
63.
Zurück zum Zitat Sun Y et al (2002) Crystalline silver nanowires by soft solution processing. Nano Lett 2(2):165–168CrossRef Sun Y et al (2002) Crystalline silver nanowires by soft solution processing. Nano Lett 2(2):165–168CrossRef
64.
Zurück zum Zitat Sun B et al (2009) Single-crystal silver nanowires: preparation and surface-enhanced raman scattering (sers) property. Mater Lett 63(29):2570–2573CrossRef Sun B et al (2009) Single-crystal silver nanowires: preparation and surface-enhanced raman scattering (sers) property. Mater Lett 63(29):2570–2573CrossRef
65.
Zurück zum Zitat Mohammad A et al (2014) Optical characteristics of vertically aligned arrays of branched silver nanowires. 14th IEEE international conference on nanotechnology, pp 563–566 Mohammad A et al (2014) Optical characteristics of vertically aligned arrays of branched silver nanowires. 14th IEEE international conference on nanotechnology, pp 563–566
66.
Zurück zum Zitat Malandrino G, Finocchiaro ST, Fragala IL (2004) Silver nanowires by a sonoself-reduction template process. J Mater Chem 14(18):2726–2728CrossRef Malandrino G, Finocchiaro ST, Fragala IL (2004) Silver nanowires by a sonoself-reduction template process. J Mater Chem 14(18):2726–2728CrossRef
67.
Zurück zum Zitat Kazeminezhad I et al (2007) Templated electrodeposition of silver nanowires in a nanoporous polycarbonate membrane from a nonaqueous ionic liquid electrolyte. Appl Phys A 86(3):373–375CrossRef Kazeminezhad I et al (2007) Templated electrodeposition of silver nanowires in a nanoporous polycarbonate membrane from a nonaqueous ionic liquid electrolyte. Appl Phys A 86(3):373–375CrossRef
68.
Zurück zum Zitat Han Y-H (2008) High density silver nanowire arrays using self-ordered anodic aluminum oxide (AAO) membrane. J Korean Ceramic Soc 45(4):191–195CrossRef Han Y-H (2008) High density silver nanowire arrays using self-ordered anodic aluminum oxide (AAO) membrane. J Korean Ceramic Soc 45(4):191–195CrossRef
69.
Zurück zum Zitat Chun-Nuan Y et al (2004) Growth mechanism of vertically aligned Ag(TCNQ) nanowires. Chin Phys Lett 21(9):1787CrossRef Chun-Nuan Y et al (2004) Growth mechanism of vertically aligned Ag(TCNQ) nanowires. Chin Phys Lett 21(9):1787CrossRef
70.
Zurück zum Zitat Cao Y, He J, Sun J (2009) Fabrication of oriented arrays of porous gold microsheaths using aligned silver nanowires as sacrificial template. Mater Lett 63(1):148–150CrossRef Cao Y, He J, Sun J (2009) Fabrication of oriented arrays of porous gold microsheaths using aligned silver nanowires as sacrificial template. Mater Lett 63(1):148–150CrossRef
71.
Zurück zum Zitat Yazawa M et al (1992) Effect of one monolayer of surface gold atoms on the epitaxial growth of inas nanowhiskers. Appl Phys Lett 61(17):2051–2053CrossRef Yazawa M et al (1992) Effect of one monolayer of surface gold atoms on the epitaxial growth of inas nanowhiskers. Appl Phys Lett 61(17):2051–2053CrossRef
72.
Zurück zum Zitat Holmes JD et al (2000) Control of thickness and orientation of solution-grown silicon nanowires. Science 287(5457):1471–1473CrossRef Holmes JD et al (2000) Control of thickness and orientation of solution-grown silicon nanowires. Science 287(5457):1471–1473CrossRef
73.
Zurück zum Zitat Nakata M et al (2015) Transfer-free synthesis of highly ordered ge nanowire arrays on glass substrates. Appl Phys Lett 107(13):133102CrossRef Nakata M et al (2015) Transfer-free synthesis of highly ordered ge nanowire arrays on glass substrates. Appl Phys Lett 107(13):133102CrossRef
74.
Zurück zum Zitat Duan X et al (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816):66–69CrossRef Duan X et al (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816):66–69CrossRef
75.
Zurück zum Zitat Lindberg C et al (2016) Silver as seed-particle material for gaas nanowires—dictating crystal phase and growth direction by substrate orientation. Nano Lett 16(4):2181–2188CrossRef Lindberg C et al (2016) Silver as seed-particle material for gaas nanowires—dictating crystal phase and growth direction by substrate orientation. Nano Lett 16(4):2181–2188CrossRef
76.
Zurück zum Zitat Zhang G et al (2008) Growth and characterization of gap nanowires on Si substrate. J Appl Phys 103(1):014301CrossRef Zhang G et al (2008) Growth and characterization of gap nanowires on Si substrate. J Appl Phys 103(1):014301CrossRef
77.
Zurück zum Zitat Zhang Y et al (2014) Self-catalyzed ternary core–shell gaasp nanowire arrays grown on patterned Si substrates by molecular beam epitaxy. Nano Lett 14(8):4542–4547CrossRef Zhang Y et al (2014) Self-catalyzed ternary core–shell gaasp nanowire arrays grown on patterned Si substrates by molecular beam epitaxy. Nano Lett 14(8):4542–4547CrossRef
78.
Zurück zum Zitat Tateno K et al (2012) VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures. Nano Lett 12(6):2888–2893CrossRef Tateno K et al (2012) VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures. Nano Lett 12(6):2888–2893CrossRef
79.
Zurück zum Zitat Kriegner D et al (2013) Structural investigation of gainp nanowires using X-ray diffraction. Thin Solid Films 543:100–105CrossRef Kriegner D et al (2013) Structural investigation of gainp nanowires using X-ray diffraction. Thin Solid Films 543:100–105CrossRef
80.
Zurück zum Zitat Tateno K, Zhang G, Nakano H (2008) Growth of GaInAs/AlInAs heterostructure nanowires for long-wavelength photon emission. Nano Lett 8(11):3645–3650CrossRef Tateno K, Zhang G, Nakano H (2008) Growth of GaInAs/AlInAs heterostructure nanowires for long-wavelength photon emission. Nano Lett 8(11):3645–3650CrossRef
81.
Zurück zum Zitat Shindo T et al (2011) GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating. Opt Express 19(3):1884–1891CrossRef Shindo T et al (2011) GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating. Opt Express 19(3):1884–1891CrossRef
82.
Zurück zum Zitat Zhang Y, Xu H, Wang Q (2010) Ultrathin single crystal zns nanowires. Chem Commun 46(47):8941–8943CrossRef Zhang Y, Xu H, Wang Q (2010) Ultrathin single crystal zns nanowires. Chem Commun 46(47):8941–8943CrossRef
83.
Zurück zum Zitat Zhang XT et al (2003) Growth and luminescence of zinc-blende-structured ZnSe nanowires by metal-organic chemical vapor deposition. Appl Phys Lett 83(26):5533–5535CrossRef Zhang XT et al (2003) Growth and luminescence of zinc-blende-structured ZnSe nanowires by metal-organic chemical vapor deposition. Appl Phys Lett 83(26):5533–5535CrossRef
84.
Zurück zum Zitat Yan S et al (2011) Novel regrowth mechanism of CdS nanowire in hydrothermal synthesis. New J Chem 35(2):299–302CrossRef Yan S et al (2011) Novel regrowth mechanism of CdS nanowire in hydrothermal synthesis. New J Chem 35(2):299–302CrossRef
86.
Zurück zum Zitat Cho K-S et al (2005) Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J Am Chem Soc 127(19):7140–7147CrossRef Cho K-S et al (2005) Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J Am Chem Soc 127(19):7140–7147CrossRef
87.
Zurück zum Zitat Finefrock SW et al (2014) Large-scale solution-phase production of Bi2te3 and PbTe nanowires using Te nanowire templates. Nanoscale 6(14):7872–7876CrossRef Finefrock SW et al (2014) Large-scale solution-phase production of Bi2te3 and PbTe nanowires using Te nanowire templates. Nanoscale 6(14):7872–7876CrossRef
88.
Zurück zum Zitat Zettler JK et al (2015) High-temperature growth of GaN nanowires by molecular beam epitaxy: toward the material quality of bulk GaN. Cryst Growth Des 15(8):4104–4109CrossRef Zettler JK et al (2015) High-temperature growth of GaN nanowires by molecular beam epitaxy: toward the material quality of bulk GaN. Cryst Growth Des 15(8):4104–4109CrossRef
89.
Zurück zum Zitat Young Kim H, Park J, Yang H (2003) Synthesis of silicon nitride nanowires directly from the silicon substrates. Chem Phys Lett 372(1–2):269–274CrossRef Young Kim H, Park J, Yang H (2003) Synthesis of silicon nitride nanowires directly from the silicon substrates. Chem Phys Lett 372(1–2):269–274CrossRef
90.
Zurück zum Zitat Kim HY, Park J, Yang H (2003) Direct synthesis of aligned silicon carbide nanowires from the silicon substrates. Chem Commun (2):256–257 Kim HY, Park J, Yang H (2003) Direct synthesis of aligned silicon carbide nanowires from the silicon substrates. Chem Commun (2):256–257
91.
Zurück zum Zitat Kumar A, Madaria AR, Zhou C (2010) Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells. J Phys Chem C 114(17):7787–7792CrossRef Kumar A, Madaria AR, Zhou C (2010) Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells. J Phys Chem C 114(17):7787–7792CrossRef
92.
Zurück zum Zitat Wang X et al (2014) Aligned epitaxial SnO2 nanowires on sapphire: growth and device applications. Nano Lett 14(6):3014–3022CrossRef Wang X et al (2014) Aligned epitaxial SnO2 nanowires on sapphire: growth and device applications. Nano Lett 14(6):3014–3022CrossRef
93.
Zurück zum Zitat Jiang X, Herricks T, Xia Y (2002) CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett 2(12):1333–1338CrossRef Jiang X, Herricks T, Xia Y (2002) CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett 2(12):1333–1338CrossRef
94.
Zurück zum Zitat Fanhao Z et al (2004) Large-scale growth of In 2 O 3 nanowires and their optical properties. Nanotechnology 15(5):596CrossRef Fanhao Z et al (2004) Large-scale growth of In 2 O 3 nanowires and their optical properties. Nanotechnology 15(5):596CrossRef
95.
Zurück zum Zitat Zhang YF et al (1998) Silicon nanowires prepared by laser ablation at high temperature. Appl Phys Lett 72(15):1835–1837CrossRef Zhang YF et al (1998) Silicon nanowires prepared by laser ablation at high temperature. Appl Phys Lett 72(15):1835–1837CrossRef
96.
Zurück zum Zitat Wong YY et al (2005) Controlled growth of silicon nanowires synthesized via solid–liquid–solid mechanism. Sci Technol Adv Mater 6(3–4):330–334CrossRef Wong YY et al (2005) Controlled growth of silicon nanowires synthesized via solid–liquid–solid mechanism. Sci Technol Adv Mater 6(3–4):330–334CrossRef
97.
Zurück zum Zitat Wang C et al (2011) Growth of straight silicon nanowires on amorphous substrates with uniform diameter, length, orientation, and location using nanopatterned host-mediated catalyst. Nano Lett 11(12):5247–5251CrossRef Wang C et al (2011) Growth of straight silicon nanowires on amorphous substrates with uniform diameter, length, orientation, and location using nanopatterned host-mediated catalyst. Nano Lett 11(12):5247–5251CrossRef
98.
Zurück zum Zitat Treuting RG, Arnold SM (1957) Orientation habits of metal whiskers. Acta Metall 5(10):598CrossRef Treuting RG, Arnold SM (1957) Orientation habits of metal whiskers. Acta Metall 5(10):598CrossRef
99.
Zurück zum Zitat Pan ZW et al (2001) Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders. J Phys Chem B 105(13):2507–2514CrossRef Pan ZW et al (2001) Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders. J Phys Chem B 105(13):2507–2514CrossRef
100.
Zurück zum Zitat Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348):208–211CrossRef Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348):208–211CrossRef
101.
Zurück zum Zitat Krause A et al (2015) Comparison of silicon nanowire growth on SiO2 and on carbon substrates. ECS Trans 70(1):69–78CrossRef Krause A et al (2015) Comparison of silicon nanowire growth on SiO2 and on carbon substrates. ECS Trans 70(1):69–78CrossRef
102.
Zurück zum Zitat Kim J, Ji C, Anderson WA (2004) Silicon nanowire growth at relatively low processing temperature. MRS Online Proceedings Library Archive. 818: p. M11.11.1 (6 pages). Kim J, Ji C, Anderson WA (2004) Silicon nanowire growth at relatively low processing temperature. MRS Online Proceedings Library Archive. 818: p. M11.11.1 (6 pages).
103.
Zurück zum Zitat Cheng SL, Chung CH, Lee HC (2007) Fabrication of vertically aligned silicon nanowire arrays and investigation on the formation of the nickel silicide nanowires. Electron Devices and Solid-State Circuits, 2007. EDSSC 2007. IEEE Conference. pp 121–124. Cheng SL, Chung CH, Lee HC (2007) Fabrication of vertically aligned silicon nanowire arrays and investigation on the formation of the nickel silicide nanowires. Electron Devices and Solid-State Circuits, 2007. EDSSC 2007. IEEE Conference. pp 121–124.
104.
Zurück zum Zitat Banerjee D et al (2016) Phonon processes in vertically aligned silicon nanowire arrays produced by low-cost all-solution galvanic displacement method. Appl Phys Lett 108(11):113109CrossRef Banerjee D et al (2016) Phonon processes in vertically aligned silicon nanowire arrays produced by low-cost all-solution galvanic displacement method. Appl Phys Lett 108(11):113109CrossRef
105.
Zurück zum Zitat Sandulova AV, Bogoyavlenskii PS, Dronyum MI (1964) Preparation and some properties of whisker and needle-shaped single crystals of germanium, silicon and their solid solutions. Sov Phys Solid State 5:1883 Sandulova AV, Bogoyavlenskii PS, Dronyum MI (1964) Preparation and some properties of whisker and needle-shaped single crystals of germanium, silicon and their solid solutions. Sov Phys Solid State 5:1883
106.
Zurück zum Zitat Kennedy T et al (2014) High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network. Nano Lett 14(2):716–723CrossRef Kennedy T et al (2014) High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network. Nano Lett 14(2):716–723CrossRef
107.
Zurück zum Zitat Wang D et al (2003) Germanium nanowire field-effect transistors with SiO2 and High-κ Hfo2 gate dielectrics. Appl Phys Lett 83(12):2432–2434CrossRef Wang D et al (2003) Germanium nanowire field-effect transistors with SiO2 and High-κ Hfo2 gate dielectrics. Appl Phys Lett 83(12):2432–2434CrossRef
108.
Zurück zum Zitat Zhang Y et al (2007) An integrated phase change memory cell with Ge nanowire diode for cross-point memory. In 2007 I.E. Symposium on VLSI Technology, 12 Jun, pp 98–99 Zhang Y et al (2007) An integrated phase change memory cell with Ge nanowire diode for cross-point memory. In 2007 I.E. Symposium on VLSI Technology, 12 Jun, pp 98–99
109.
Zurück zum Zitat O'Regan C et al (2014) Recent advances in the growth of germanium nanowires: synthesis, growth dynamics and morphology control. J Mater Chem C 2(1):14–33CrossRef O'Regan C et al (2014) Recent advances in the growth of germanium nanowires: synthesis, growth dynamics and morphology control. J Mater Chem C 2(1):14–33CrossRef
110.
Zurück zum Zitat He Y et al (2005) Vertically well-aligned ZnO nanowires generated with self-assembling polymers. Mater Chem Phys 94(1):29–33CrossRef He Y et al (2005) Vertically well-aligned ZnO nanowires generated with self-assembling polymers. Mater Chem Phys 94(1):29–33CrossRef
111.
Zurück zum Zitat Yuan Z-Y, Su B-L (2004) Titanium oxide nanotubes, nanofibers and nanowires. Colloids Surf A Physicochem Eng Asp 241(1–3):173–183CrossRef Yuan Z-Y, Su B-L (2004) Titanium oxide nanotubes, nanofibers and nanowires. Colloids Surf A Physicochem Eng Asp 241(1–3):173–183CrossRef
112.
Zurück zum Zitat Shi J, Wang X (2011) Growth of rutile titanium dioxide nanowires by pulsed chemical vapor deposition. Cryst Growth Des 11(4):949–954CrossRef Shi J, Wang X (2011) Growth of rutile titanium dioxide nanowires by pulsed chemical vapor deposition. Cryst Growth Des 11(4):949–954CrossRef
113.
Zurück zum Zitat Faruque MK et al (2012) Fabrication, characterization, and mechanism of vertically aligned titanium nitride nanowires. Appl Surf Sci 260:36–41CrossRef Faruque MK et al (2012) Fabrication, characterization, and mechanism of vertically aligned titanium nitride nanowires. Appl Surf Sci 260:36–41CrossRef
114.
Zurück zum Zitat Wang X et al (2015) Confined-space synthesis of single crystal TiO(2) nanowires in atmospheric vessel at low temperature: a generalized approach. Sci Rep 5:8129CrossRef Wang X et al (2015) Confined-space synthesis of single crystal TiO(2) nanowires in atmospheric vessel at low temperature: a generalized approach. Sci Rep 5:8129CrossRef
115.
Zurück zum Zitat Yin Y, Zhang G, Xia Y (2002) Synthesis and characterization of MgO nanowires through a vapor-phase precursor method. Adv Funct Mater 12(4):293–298CrossRef Yin Y, Zhang G, Xia Y (2002) Synthesis and characterization of MgO nanowires through a vapor-phase precursor method. Adv Funct Mater 12(4):293–298CrossRef
116.
Zurück zum Zitat Zhang Y et al (2001) A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si/SiO2 mixture. J Cryst Growth 233(4):803–808CrossRef Zhang Y et al (2001) A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si/SiO2 mixture. J Cryst Growth 233(4):803–808CrossRef
117.
Zurück zum Zitat Xiao Z et al (2006) High-density, aligned SiO2 nanowire arrays: microscopic imaging of the unique growth style and their ultraviolet light emission properties. J Phys Chem B 110(32):15724–15728CrossRef Xiao Z et al (2006) High-density, aligned SiO2 nanowire arrays: microscopic imaging of the unique growth style and their ultraviolet light emission properties. J Phys Chem B 110(32):15724–15728CrossRef
118.
Zurück zum Zitat Chang C-C et al (2012) Synthesis and growth twinning of Al2O3 nanowires by simple evaporation of Al-Si alloy powder. CrstEngComm 14(3):1117–1121CrossRef Chang C-C et al (2012) Synthesis and growth twinning of Al2O3 nanowires by simple evaporation of Al-Si alloy powder. CrstEngComm 14(3):1117–1121CrossRef
119.
Zurück zum Zitat Dang TTL, Tonezzer M, Nguyen VH (2015) Hydrothermal growth and hydrogen selective sensing of nickel oxide nanowires. J Nanomater 2015:8 Dang TTL, Tonezzer M, Nguyen VH (2015) Hydrothermal growth and hydrogen selective sensing of nickel oxide nanowires. J Nanomater 2015:8
120.
Zurück zum Zitat Das S et al (2010) Formation of NiO nanowires on the surface of nickel strips. J Alloys Compd 505(1):L19–L21CrossRef Das S et al (2010) Formation of NiO nanowires on the surface of nickel strips. J Alloys Compd 505(1):L19–L21CrossRef
121.
Zurück zum Zitat Lin Y et al (2003) Ordered nickel oxide nanowire arrays and their optical absorption properties. Chem Phys Lett 380(5–6):521–525CrossRef Lin Y et al (2003) Ordered nickel oxide nanowire arrays and their optical absorption properties. Chem Phys Lett 380(5–6):521–525CrossRef
122.
Zurück zum Zitat Pang H et al (2010) Selective synthesis of nickel oxide nanowires and length effect on their electrochemical properties. Nanoscale 2(6):920–922CrossRef Pang H et al (2010) Selective synthesis of nickel oxide nanowires and length effect on their electrochemical properties. Nanoscale 2(6):920–922CrossRef
123.
Zurück zum Zitat Patil RA et al (2013) An efficient methodology for measurement of the average electrical properties of single one-dimensional NiO nanorods. Sci Rep 3:3070CrossRef Patil RA et al (2013) An efficient methodology for measurement of the average electrical properties of single one-dimensional NiO nanorods. Sci Rep 3:3070CrossRef
124.
Zurück zum Zitat Sekiya K et al (2012) Morphology control of nickel oxide nanowires. Microelectron Eng 98:532–535CrossRef Sekiya K et al (2012) Morphology control of nickel oxide nanowires. Microelectron Eng 98:532–535CrossRef
125.
Zurück zum Zitat Wei ZP et al (2010) A template and catalyst-free metal-etching-oxidation method to synthesize aligned oxide nanowire arrays: NiO as an example. ACS Nano 4(8):4785–4791CrossRef Wei ZP et al (2010) A template and catalyst-free metal-etching-oxidation method to synthesize aligned oxide nanowire arrays: NiO as an example. ACS Nano 4(8):4785–4791CrossRef
126.
Zurück zum Zitat Zeng W et al (2012) Facile synthesis of NiO nanowires and their gas sensing performance. Trans Nonferrous Met Soc Chin 22:s100–s104CrossRef Zeng W et al (2012) Facile synthesis of NiO nanowires and their gas sensing performance. Trans Nonferrous Met Soc Chin 22:s100–s104CrossRef
127.
Zurück zum Zitat Bechelany M et al (2007) Synthesis of boron nitride nanotubes by a template-assisted polymer thermolysis process. J Phys Chem C 111(36):13378–13384CrossRef Bechelany M et al (2007) Synthesis of boron nitride nanotubes by a template-assisted polymer thermolysis process. J Phys Chem C 111(36):13378–13384CrossRef
128.
Zurück zum Zitat Cao L et al (2002) Synthesis of well-aligned boron nanowires and their structural stability under high pressure. J Phys Condens Matter 14(44):11017CrossRef Cao L et al (2002) Synthesis of well-aligned boron nanowires and their structural stability under high pressure. J Phys Condens Matter 14(44):11017CrossRef
129.
Zurück zum Zitat Cao LM et al (2001) Well-aligned boron nanowire arrays. Adv Mater 13(22):1701–1704CrossRef Cao LM et al (2001) Well-aligned boron nanowire arrays. Adv Mater 13(22):1701–1704CrossRef
130.
Zurück zum Zitat Deepak FL et al (2002) Boron nitride nanotubes and nanowires. Chem Phys Lett 353(5–6):345–352CrossRef Deepak FL et al (2002) Boron nitride nanotubes and nanowires. Chem Phys Lett 353(5–6):345–352CrossRef
131.
Zurück zum Zitat Huo KF et al (2002) Synthesis of boron nitride nanowires. Appl Phys Lett 80(19):3611–3613CrossRef Huo KF et al (2002) Synthesis of boron nitride nanowires. Appl Phys Lett 80(19):3611–3613CrossRef
132.
Zurück zum Zitat Kalay S et al (2015) Synthesis of boron nitride nanotubes and their applications. Beilstein J Nanotechnol 6:84–102CrossRef Kalay S et al (2015) Synthesis of boron nitride nanotubes and their applications. Beilstein J Nanotechnol 6:84–102CrossRef
133.
Zurück zum Zitat Patel RB, Chou T, Iqbal Z (2015) Synthesis of boron nanowires, nanotubes, and nanosheets. J Nanomater 2015:7CrossRef Patel RB, Chou T, Iqbal Z (2015) Synthesis of boron nanowires, nanotubes, and nanosheets. J Nanomater 2015:7CrossRef
134.
Zurück zum Zitat Su C-H et al (2015) Self-templating noncatalyzed synthesis of monolithic boron nitride nanowires. RSC Adv 5(92):75810–75816CrossRef Su C-H et al (2015) Self-templating noncatalyzed synthesis of monolithic boron nitride nanowires. RSC Adv 5(92):75810–75816CrossRef
135.
Zurück zum Zitat Zhou J et al (2014) Vertically-aligned BCN nanotube arrays with superior performance in electrochemical capacitors. Sci Rep 4:6083CrossRef Zhou J et al (2014) Vertically-aligned BCN nanotube arrays with superior performance in electrochemical capacitors. Sci Rep 4:6083CrossRef
136.
Zurück zum Zitat Zhu Y-C et al (2004) New boron nitride whiskers: showing strong ultraviolet and visible light luminescence. J Phys Chem B 108(20):6193–6196CrossRef Zhu Y-C et al (2004) New boron nitride whiskers: showing strong ultraviolet and visible light luminescence. J Phys Chem B 108(20):6193–6196CrossRef
137.
Zurück zum Zitat Polleux J et al (2006) Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. Angew Chem 118(2):267–271CrossRef Polleux J et al (2006) Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. Angew Chem 118(2):267–271CrossRef
138.
Zurück zum Zitat An G-H et al (2011) One-pot fabrication of hollow SiO2 nanowires via an electrospinning technique. Mater Lett 65(15–16):2377–2380CrossRef An G-H et al (2011) One-pot fabrication of hollow SiO2 nanowires via an electrospinning technique. Mater Lett 65(15–16):2377–2380CrossRef
139.
Zurück zum Zitat Antonio T et al (2010) Scalable flame synthesis of SiO 2 nanowires: dynamics of growth. Nanotechnology 21(46):465604CrossRef Antonio T et al (2010) Scalable flame synthesis of SiO 2 nanowires: dynamics of growth. Nanotechnology 21(46):465604CrossRef
140.
Zurück zum Zitat Zamchiy A, Baranov E, Khmel S (2014) New approach to the growth of SiO2 nanowires using Sn catalyst on Si substrate. physica status solidi (c) 11(9–10):1397–1400CrossRef Zamchiy A, Baranov E, Khmel S (2014) New approach to the growth of SiO2 nanowires using Sn catalyst on Si substrate. physica status solidi (c) 11(9–10):1397–1400CrossRef
141.
Zurück zum Zitat Li Y et al (2011) Growth of SiO 2 nanowires on different substrates using Au as a catalyst. J Semiconduct 32(2):023002CrossRef Li Y et al (2011) Growth of SiO 2 nanowires on different substrates using Au as a catalyst. J Semiconduct 32(2):023002CrossRef
142.
Zurück zum Zitat Yu-Chiao L, Wen-Tai L (2005) Growth of SiO 2 nanowires without a catalyst via carbothermal reduction of CuO powders. Nanotechnology 16(9):1648CrossRef Yu-Chiao L, Wen-Tai L (2005) Growth of SiO 2 nanowires without a catalyst via carbothermal reduction of CuO powders. Nanotechnology 16(9):1648CrossRef
143.
Zurück zum Zitat Mihailovic D (2009) Inorganic molecular wires: physical and functional properties of transition metal chalco-halide polymers. Prog Mater Sci 54(3):309–350CrossRef Mihailovic D (2009) Inorganic molecular wires: physical and functional properties of transition metal chalco-halide polymers. Prog Mater Sci 54(3):309–350CrossRef
144.
Zurück zum Zitat Daniel V et al (2004) Air-stable monodispersed Mo 6 S 3 I 6 nanowires. Nanotechnology 15(5):635CrossRef Daniel V et al (2004) Air-stable monodispersed Mo 6 S 3 I 6 nanowires. Nanotechnology 15(5):635CrossRef
145.
Zurück zum Zitat Potel M et al (1980) New pseudo-one-dimensional metals: M2Mo6Se6 (M = Na, in, K, Ti), M2Mo6S6 (M = K, Rb, Cs), M2Mo6Te6 (M = in, Ti). J Solid State Chem 35(2):286–290CrossRef Potel M et al (1980) New pseudo-one-dimensional metals: M2Mo6Se6 (M = Na, in, K, Ti), M2Mo6S6 (M = K, Rb, Cs), M2Mo6Te6 (M = in, Ti). J Solid State Chem 35(2):286–290CrossRef
146.
Zurück zum Zitat Remskar M et al (2010) The Mos2 nanotubes with defect-controlled electric properties. Nanoscale Res Lett 6(1):1–6 Remskar M et al (2010) The Mos2 nanotubes with defect-controlled electric properties. Nanoscale Res Lett 6(1):1–6
147.
Zurück zum Zitat Dvorsek D et al (2007) Growth and field emission properties of vertically aligned molybdenum–sulfur–iodine nanowires on molybdenum and quartz substrates. J Appl Phys 102(11):114308CrossRef Dvorsek D et al (2007) Growth and field emission properties of vertically aligned molybdenum–sulfur–iodine nanowires on molybdenum and quartz substrates. J Appl Phys 102(11):114308CrossRef
148.
Zurück zum Zitat Messer B, Song JH, Yang P (2000) Microchannel networks for nanowire patterning. J Am Chem Soc 122(41):10232–10233CrossRef Messer B, Song JH, Yang P (2000) Microchannel networks for nanowire patterning. J Am Chem Soc 122(41):10232–10233CrossRef
149.
Zurück zum Zitat Wu Y et al (2002) Inorganic semiconductor nanowires: rational growth, assembly, and novel properties. Chemistry A 8(6):1260–1268 Wu Y et al (2002) Inorganic semiconductor nanowires: rational growth, assembly, and novel properties. Chemistry A 8(6):1260–1268
150.
Zurück zum Zitat Chen H et al (2010) Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications. Mater Sci Eng R Rep 70(3–6):63–91CrossRef Chen H et al (2010) Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications. Mater Sci Eng R Rep 70(3–6):63–91CrossRef
151.
Zurück zum Zitat Patole SP et al (2008) Alignment and wall control of ultra long carbon nanotubes in water assisted chemical vapour deposition. J Phys D Appl Phys 41(15):155311CrossRef Patole SP et al (2008) Alignment and wall control of ultra long carbon nanotubes in water assisted chemical vapour deposition. J Phys D Appl Phys 41(15):155311CrossRef
152.
Zurück zum Zitat Chhowalla M et al (2001) Field emission from short and stubby vertically aligned carbon nanotubes. Appl Phys Lett 79(13):2079–2081CrossRef Chhowalla M et al (2001) Field emission from short and stubby vertically aligned carbon nanotubes. Appl Phys Lett 79(13):2079–2081CrossRef
153.
Zurück zum Zitat Shang NG et al (2010) High-rate low-temperature growth of vertically aligned carbon nanotubes. Nanotechnology 21(50):505604CrossRef Shang NG et al (2010) High-rate low-temperature growth of vertically aligned carbon nanotubes. Nanotechnology 21(50):505604CrossRef
154.
Zurück zum Zitat Ago H et al (2011) Ultrahigh-vacuum-assisted control of metal nanoparticles for horizontally aligned single-walled carbon nanotubes with extraordinary uniform diameters. J Phys Chem C 115(27):13247–13253CrossRef Ago H et al (2011) Ultrahigh-vacuum-assisted control of metal nanoparticles for horizontally aligned single-walled carbon nanotubes with extraordinary uniform diameters. J Phys Chem C 115(27):13247–13253CrossRef
155.
Zurück zum Zitat Almaqwashi AA et al (2011) Variable-force microscopy for advanced characterization of horizontally aligned carbon nanotubes. Nanotechnology 22(27):275717CrossRef Almaqwashi AA et al (2011) Variable-force microscopy for advanced characterization of horizontally aligned carbon nanotubes. Nanotechnology 22(27):275717CrossRef
156.
Zurück zum Zitat Cui R et al (2010) Comparison between copper and iron as catalyst for chemical vapor deposition of horizontally aligned ultralong single-walled carbon nanotubes on silicon substrates. J Phys Chem C 114(37):15547–15552CrossRef Cui R et al (2010) Comparison between copper and iron as catalyst for chemical vapor deposition of horizontally aligned ultralong single-walled carbon nanotubes on silicon substrates. J Phys Chem C 114(37):15547–15552CrossRef
157.
Zurück zum Zitat Ding L et al (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9(2):800–805CrossRef Ding L et al (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9(2):800–805CrossRef
158.
Zurück zum Zitat Ding L, Yuan D, Liu J (2008) Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J Am Chem Soc 130(16):5428–5429CrossRef Ding L, Yuan D, Liu J (2008) Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J Am Chem Soc 130(16):5428–5429CrossRef
159.
Zurück zum Zitat Hong SW, Banks T, Rogers JA (2010) Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz. Adv Mater 22(16):1826–1830CrossRef Hong SW, Banks T, Rogers JA (2010) Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz. Adv Mater 22(16):1826–1830CrossRef
160.
Zurück zum Zitat Huang L et al (2006) Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes. J Phys Chem B 110(23):11103–11109CrossRef Huang L et al (2006) Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes. J Phys Chem B 110(23):11103–11109CrossRef
161.
Zurück zum Zitat Huang S et al (2004) Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating”chemical vapor deposition process. Nano Lett 4(6):1025–1028CrossRef Huang S et al (2004) Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating”chemical vapor deposition process. Nano Lett 4(6):1025–1028CrossRef
163.
Zurück zum Zitat Ismach A, Kantorovich D, Joselevich E (2005) Carbon nanotube graphoepitaxy: highly oriented growth by faceted nanosteps. J Am Chem Soc 127(33):11554–11555CrossRef Ismach A, Kantorovich D, Joselevich E (2005) Carbon nanotube graphoepitaxy: highly oriented growth by faceted nanosteps. J Am Chem Soc 127(33):11554–11555CrossRef
164.
Zurück zum Zitat Kang SJ et al (2007) High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol 2(4):230–236CrossRef Kang SJ et al (2007) High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol 2(4):230–236CrossRef
165.
Zurück zum Zitat Kocabas C et al (2005) Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 1(11):1110–1116CrossRef Kocabas C et al (2005) Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 1(11):1110–1116CrossRef
166.
Zurück zum Zitat Ozel T et al (2009) Nonuniform compressive strain in horizontally aligned single-walled carbon nanotubes grown on single crystal quartz. ACS Nano 3(8):2217–2224CrossRef Ozel T et al (2009) Nonuniform compressive strain in horizontally aligned single-walled carbon nanotubes grown on single crystal quartz. ACS Nano 3(8):2217–2224CrossRef
167.
Zurück zum Zitat Reina A et al (2007) Growth mechanism of long and horizontally aligned carbon nanotubes by chemical vapor deposition. J Phys Chem C 111(20):7292–7297CrossRef Reina A et al (2007) Growth mechanism of long and horizontally aligned carbon nanotubes by chemical vapor deposition. J Phys Chem C 111(20):7292–7297CrossRef
168.
Zurück zum Zitat Shadmi N et al (2015) Guided growth of horizontal single-wall carbon nanotubes on M-plane sapphire. J Phys Chem C 119(15):8382–8387CrossRef Shadmi N et al (2015) Guided growth of horizontal single-wall carbon nanotubes on M-plane sapphire. J Phys Chem C 119(15):8382–8387CrossRef
169.
Zurück zum Zitat Yu Q et al (2006) Mechanism of horizontally aligned growth of single-wall carbon nanotubes on R-plane sapphire. J Phys Chem B 110(45):22676–22680CrossRef Yu Q et al (2006) Mechanism of horizontally aligned growth of single-wall carbon nanotubes on R-plane sapphire. J Phys Chem B 110(45):22676–22680CrossRef
170.
Zurück zum Zitat Yuan D et al (2008) Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett 8(8):2576–2579CrossRef Yuan D et al (2008) Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett 8(8):2576–2579CrossRef
171.
Zurück zum Zitat Zhou W et al (2006) Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett 6(12):2987–2990CrossRef Zhou W et al (2006) Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett 6(12):2987–2990CrossRef
172.
Zurück zum Zitat AuBuchon JF et al (2006) Electric-field-guided growth of carbon nanotubes during DC plasma-enhanced CVD. Chem Vap Deposition 12(6):370–374CrossRef AuBuchon JF et al (2006) Electric-field-guided growth of carbon nanotubes during DC plasma-enhanced CVD. Chem Vap Deposition 12(6):370–374CrossRef
173.
Zurück zum Zitat Chai Y, Xiao Z, Chan PCH (2009) Fabrication and characterization of horizontally aligned carbon nanotubes for interconnect application. 2009 59th electronic components and technology conference, San Diego, CA, May 2009. pp 1465–1469 Chai Y, Xiao Z, Chan PCH (2009) Fabrication and characterization of horizontally aligned carbon nanotubes for interconnect application. 2009 59th electronic components and technology conference, San Diego, CA, May 2009. pp 1465–1469
174.
Zurück zum Zitat Chai Y, Xiao Z, Chan PCH (2010) Horizontally aligned carbon nanotube bundles for interconnect application: diameter-dependent contact resistance and mean free path. Nanotechnology 21(23):235705CrossRef Chai Y, Xiao Z, Chan PCH (2010) Horizontally aligned carbon nanotube bundles for interconnect application: diameter-dependent contact resistance and mean free path. Nanotechnology 21(23):235705CrossRef
175.
Zurück zum Zitat Hayashi Y et al (2010) Direct growth of horizontally aligned carbon nanotubes between electrodes and its application to field-effect transistors. 2010 3rd international nanoelectronics conference (INEC). pp 215–216 Hayashi Y et al (2010) Direct growth of horizontally aligned carbon nanotubes between electrodes and its application to field-effect transistors. 2010 3rd international nanoelectronics conference (INEC). pp 215–216
176.
Zurück zum Zitat Joselevich E, Lieber CM (2002) Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett 2(10):1137–1141CrossRef Joselevich E, Lieber CM (2002) Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett 2(10):1137–1141CrossRef
177.
Zurück zum Zitat Jung SM, Jung HY, Suh JS (2007) Horizontally aligned carbon nanotube field emitters having a long term stability. Carbon 45(15):2917–2921CrossRef Jung SM, Jung HY, Suh JS (2007) Horizontally aligned carbon nanotube field emitters having a long term stability. Carbon 45(15):2917–2921CrossRef
178.
Zurück zum Zitat Jung SM, Jung HY, Suh JS (2008) Horizontally aligned carbon nanotube field emitters fabricated on ITO glass substrates. Carbon 46(14):1973–1977CrossRef Jung SM, Jung HY, Suh JS (2008) Horizontally aligned carbon nanotube field emitters fabricated on ITO glass substrates. Carbon 46(14):1973–1977CrossRef
179.
Zurück zum Zitat Law JBK, Koo CK, Thong JTL (2007) Horizontally directed growth of carbon nanotubes utilizing self-generated electric field from plasma induced surface charging. Appl Phys Lett 91(24):243108CrossRef Law JBK, Koo CK, Thong JTL (2007) Horizontally directed growth of carbon nanotubes utilizing self-generated electric field from plasma induced surface charging. Appl Phys Lett 91(24):243108CrossRef
180.
Zurück zum Zitat Ural A, Li Y, Dai H (2002) Electric-field-aligned growth of single-walled carbon nanotubes on surfaces. Appl Phys Lett 81(18):3464–3466CrossRef Ural A, Li Y, Dai H (2002) Electric-field-aligned growth of single-walled carbon nanotubes on surfaces. Appl Phys Lett 81(18):3464–3466CrossRef
181.
Zurück zum Zitat Zhang Y et al (2001) Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl Phys Lett 79(19):3155–3157CrossRef Zhang Y et al (2001) Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl Phys Lett 79(19):3155–3157CrossRef
182.
Zurück zum Zitat Ago H et al (2006) Synthesis of horizontally-aligned single-walled carbon nanotubes with controllable density on sapphire surface and polarized raman spectroscopy. Chem Phys Lett 421(4–6):399–403CrossRef Ago H et al (2006) Synthesis of horizontally-aligned single-walled carbon nanotubes with controllable density on sapphire surface and polarized raman spectroscopy. Chem Phys Lett 421(4–6):399–403CrossRef
183.
Zurück zum Zitat Hong BH et al (2005) Quasi-continuous growth of ultralong carbon nanotube arrays. J Am Chem Soc 127(44):15336–15337CrossRef Hong BH et al (2005) Quasi-continuous growth of ultralong carbon nanotube arrays. J Am Chem Soc 127(44):15336–15337CrossRef
184.
Zurück zum Zitat Hsu CM et al (2002) Growth of the large area horizontally-aligned carbon nanotubes by ECR-CVD. Thin Solid Films 420–421:225–229CrossRef Hsu CM et al (2002) Growth of the large area horizontally-aligned carbon nanotubes by ECR-CVD. Thin Solid Films 420–421:225–229CrossRef
185.
Zurück zum Zitat Huang S, Cai X, Liu J (2003) Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J Am Chem Soc 125(19):5636–5637CrossRef Huang S, Cai X, Liu J (2003) Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J Am Chem Soc 125(19):5636–5637CrossRef
186.
Zurück zum Zitat Jin Z et al (2007) Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. Nano Lett 7(7):2073–2079CrossRef Jin Z et al (2007) Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. Nano Lett 7(7):2073–2079CrossRef
187.
Zurück zum Zitat Li L et al (2012) Electrochemical growth of gold nanoparticles on horizontally aligned carbon nanotubes: a new platform for ultrasensitive DNA sensing. Biosens Bioelectron 33(1):279–283MathSciNetCrossRef Li L et al (2012) Electrochemical growth of gold nanoparticles on horizontally aligned carbon nanotubes: a new platform for ultrasensitive DNA sensing. Biosens Bioelectron 33(1):279–283MathSciNetCrossRef
188.
Zurück zum Zitat Liu H et al (2009) The controlled growth of horizontally aligned single-walled carbon nanotube arrays by a gas flow process. Nanotechnology 20(34):345604CrossRef Liu H et al (2009) The controlled growth of horizontally aligned single-walled carbon nanotube arrays by a gas flow process. Nanotechnology 20(34):345604CrossRef
189.
Zurück zum Zitat Liu Y et al (2009) Flexible orientation control of ultralong single-walled carbon nanotubes by gas flow. Nanotechnology 20(18):185601CrossRef Liu Y et al (2009) Flexible orientation control of ultralong single-walled carbon nanotubes by gas flow. Nanotechnology 20(18):185601CrossRef
190.
Zurück zum Zitat Xie H et al (2016) Preloading catalysts in the reactor for repeated growth of horizontally aligned carbon nanotube arrays. Carbon 98:157–161CrossRef Xie H et al (2016) Preloading catalysts in the reactor for repeated growth of horizontally aligned carbon nanotube arrays. Carbon 98:157–161CrossRef
191.
Zurück zum Zitat Dayeh SA, Picraux ST (2010) Direct observation of nanoscale size effects in ge semiconductor nanowire growth. Nano Lett 10(10):4032–4039CrossRef Dayeh SA, Picraux ST (2010) Direct observation of nanoscale size effects in ge semiconductor nanowire growth. Nano Lett 10(10):4032–4039CrossRef
192.
Zurück zum Zitat Qi H et al (2012) Growth of vertically aligned ZnO nanowire arrays using bilayered metal catalysts. J Nanomater 2012:7 Qi H et al (2012) Growth of vertically aligned ZnO nanowire arrays using bilayered metal catalysts. J Nanomater 2012:7
193.
Zurück zum Zitat Fengmei G et al (2008) Aligned ultra-long single-crystalline Α—Si 3 N 4 nanowires. Nanotechnology 19(10):105602CrossRef Fengmei G et al (2008) Aligned ultra-long single-crystalline Α—Si 3 N 4 nanowires. Nanotechnology 19(10):105602CrossRef
194.
Zurück zum Zitat Woodruff JH et al (2007) Vertically oriented germanium nanowires grown from gold colloids on silicon substrates and subsequent gold removal. Nano Lett 7(6):1637–1642CrossRef Woodruff JH et al (2007) Vertically oriented germanium nanowires grown from gold colloids on silicon substrates and subsequent gold removal. Nano Lett 7(6):1637–1642CrossRef
195.
Zurück zum Zitat Toko K et al (2015) Vertically aligned Ge nanowires on flexible plastic films synthesized by (111)-oriented Ge seeded vapor–liquid–solid growth. ACS Appl Mater Interfaces 7(32):18120–18124CrossRef Toko K et al (2015) Vertically aligned Ge nanowires on flexible plastic films synthesized by (111)-oriented Ge seeded vapor–liquid–solid growth. ACS Appl Mater Interfaces 7(32):18120–18124CrossRef
196.
Zurück zum Zitat Sierra-Sastre Y et al (2008) Vertical growth of Ge nanowires from biotemplated Au nanoparticle catalysts. J Am Chem Soc 130(32):10488–10489CrossRef Sierra-Sastre Y et al (2008) Vertical growth of Ge nanowires from biotemplated Au nanoparticle catalysts. J Am Chem Soc 130(32):10488–10489CrossRef
197.
Zurück zum Zitat O’Regan C et al (2013) Engineering the growth of germanium nanowires by tuning the supersaturation of Au/Ge binary alloy catalysts. Chem Mater 25(15):3096–3104CrossRef O’Regan C et al (2013) Engineering the growth of germanium nanowires by tuning the supersaturation of Au/Ge binary alloy catalysts. Chem Mater 25(15):3096–3104CrossRef
198.
Zurück zum Zitat Li CB et al (2008) Controlled Ge nanowires growth on patterned Au catalyst substrate. 2008 I.E. silicon nanoelectronics workshop, pp 1–2 Li CB et al (2008) Controlled Ge nanowires growth on patterned Au catalyst substrate. 2008 I.E. silicon nanoelectronics workshop, pp 1–2
199.
Zurück zum Zitat Leu PW et al (2008) Oxide-encapsulated vertical germanium nanowire structures and their DC transport properties. Nanotechnology 19(48):485705CrossRef Leu PW et al (2008) Oxide-encapsulated vertical germanium nanowire structures and their DC transport properties. Nanotechnology 19(48):485705CrossRef
200.
Zurück zum Zitat Kawamura Y et al (2012) Direct-gap photoluminescence from germanium nanowires. Physical Review B 86(3):035306CrossRef Kawamura Y et al (2012) Direct-gap photoluminescence from germanium nanowires. Physical Review B 86(3):035306CrossRef
201.
Zurück zum Zitat Liangbing H, Hecht DS, Grüner G (2009) Infrared transparent carbon nanotube thin films. Appl Phys Lett 94(8):081103. (3 pp)CrossRef Liangbing H, Hecht DS, Grüner G (2009) Infrared transparent carbon nanotube thin films. Appl Phys Lett 94(8):081103. (3 pp)CrossRef
202.
Zurück zum Zitat Adhikari H et al (2006) Germanium nanowire epitaxy: shape and orientation control. Nano Lett 6(2):318–323CrossRef Adhikari H et al (2006) Germanium nanowire epitaxy: shape and orientation control. Nano Lett 6(2):318–323CrossRef
203.
Zurück zum Zitat Geng C et al (2004) Well-aligned ZnO nanowire arrays fabricated on silicon substrates. Adv Funct Mater 14(6):589–594CrossRef Geng C et al (2004) Well-aligned ZnO nanowire arrays fabricated on silicon substrates. Adv Funct Mater 14(6):589–594CrossRef
204.
Zurück zum Zitat Jamali Sheini F et al (2010) Low temperature growth of aligned ZnO nanowires and their application as field emission cathodes. Mater Chem Phys 120(2–3):691–696CrossRef Jamali Sheini F et al (2010) Low temperature growth of aligned ZnO nanowires and their application as field emission cathodes. Mater Chem Phys 120(2–3):691–696CrossRef
205.
Zurück zum Zitat Ji L-W et al (2009) Effect of seed layer on the growth of well-aligned ZnO nanowires. J Phys Chem Solid 70(10):1359–1362CrossRef Ji L-W et al (2009) Effect of seed layer on the growth of well-aligned ZnO nanowires. J Phys Chem Solid 70(10):1359–1362CrossRef
206.
Zurück zum Zitat Liu F et al (2005) Well-aligned zinc oxide nanorods and nanowires prepared without catalyst. J Cryst Growth 274(1–2):126–131CrossRef Liu F et al (2005) Well-aligned zinc oxide nanorods and nanowires prepared without catalyst. J Cryst Growth 274(1–2):126–131CrossRef
207.
Zurück zum Zitat Tak Y, Yong K (2005) Controlled growth of well-aligned ZnO nanorod array using a novel solution method. J Phys Chem B 109(41):19263–19269CrossRef Tak Y, Yong K (2005) Controlled growth of well-aligned ZnO nanorod array using a novel solution method. J Phys Chem B 109(41):19263–19269CrossRef
208.
Zurück zum Zitat Unalan HE et al (2008) Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology 19(25):255608CrossRef Unalan HE et al (2008) Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology 19(25):255608CrossRef
209.
Zurück zum Zitat Xu S et al (2008) Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst. J Am Chem Soc 130(45):14958–14959CrossRef Xu S et al (2008) Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst. J Am Chem Soc 130(45):14958–14959CrossRef
210.
Zurück zum Zitat Zeng Y-J et al (2005) Well-aligned ZnO nanowires grown on Si substrate via metal–organic chemical vapor deposition. Appl Surf Sci 250(1–4):280–283CrossRef Zeng Y-J et al (2005) Well-aligned ZnO nanowires grown on Si substrate via metal–organic chemical vapor deposition. Appl Surf Sci 250(1–4):280–283CrossRef
211.
Zurück zum Zitat Zhitao H et al (2013) Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method. J Semiconduct 34(6):063002CrossRef Zhitao H et al (2013) Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method. J Semiconduct 34(6):063002CrossRef
212.
Zurück zum Zitat Lin W et al (2009) Vertically aligned carbon nanotubes on copper substrates for applications as thermal interface materials: from synthesis to assembly. 2009 59th electronic components and technology conference, pp 441–447 Lin W et al (2009) Vertically aligned carbon nanotubes on copper substrates for applications as thermal interface materials: from synthesis to assembly. 2009 59th electronic components and technology conference, pp 441–447
213.
Zurück zum Zitat Qi HJ et al (2003) Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation. J Mech Phys Solids 51(11–12):2213–2237CrossRef Qi HJ et al (2003) Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation. J Mech Phys Solids 51(11–12):2213–2237CrossRef
214.
Zurück zum Zitat Qu L, Du F, Dai L (2008) Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs. Nano Lett 8(9):2682–2687CrossRef Qu L, Du F, Dai L (2008) Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs. Nano Lett 8(9):2682–2687CrossRef
215.
Zurück zum Zitat Ren ZF et al (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282(5391):1105–1107CrossRef Ren ZF et al (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282(5391):1105–1107CrossRef
216.
Zurück zum Zitat Shahzad MI et al (2013) Growth of vertically aligned multiwall carbon nanotubes columns. J Phys Conf Ser 439(1):012008CrossRef Shahzad MI et al (2013) Growth of vertically aligned multiwall carbon nanotubes columns. J Phys Conf Ser 439(1):012008CrossRef
217.
Zurück zum Zitat Van Hooijdonk E et al (2013) Functionalization of vertically aligned carbon nanotubes. Beilstein J Nanotechnol 4:129–152CrossRef Van Hooijdonk E et al (2013) Functionalization of vertically aligned carbon nanotubes. Beilstein J Nanotechnol 4:129–152CrossRef
218.
Zurück zum Zitat Yu M et al (2009) High density, vertically-aligned carbon nanotube membranes. Nano Lett 9(1):225–229CrossRef Yu M et al (2009) High density, vertically-aligned carbon nanotube membranes. Nano Lett 9(1):225–229CrossRef
219.
Zurück zum Zitat Zhu H et al (2001) Hydrogen adsorption in bundles of well-aligned carbon nanotubes at room temperature. Appl Surf Sci 178(1–4):50–55CrossRef Zhu H et al (2001) Hydrogen adsorption in bundles of well-aligned carbon nanotubes at room temperature. Appl Surf Sci 178(1–4):50–55CrossRef
220.
Zurück zum Zitat Remškar DVM et al (2004) Air-stable monodispersed Mo 6 S 3 I 6 nanowires. Nanotechnology 15(5):635CrossRef Remškar DVM et al (2004) Air-stable monodispersed Mo 6 S 3 I 6 nanowires. Nanotechnology 15(5):635CrossRef
221.
Zurück zum Zitat Zhang Z et al (2015) Ultrathin inorganic molecular nanowire based on polyoxometalates. Nat Commun 6 Zhang Z et al (2015) Ultrathin inorganic molecular nanowire based on polyoxometalates. Nat Commun 6
Metadaten
Titel
Aligned Nanowire Growth
verfasst von
V. Cientanni
W. I. Milne
M. T. Cole
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-67132-1_1

Neuer Inhalt