Skip to main content
Erschienen in: Photonic Network Communications 2/2018

07.09.2017 | Original Paper

All optical half adder based on photonic crystal resonant cavities

verfasst von: Mona Neisy, Mohammad Soroosh, Karim Ansari-Asl

Erschienen in: Photonic Network Communications | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we are going to propose and design an all optical half adder based on photonic crystal structures. For realizing the proposed structure, we will use two nonlinear resonant cavities inside a two-dimensional photonic crystal structure. Nonlinear resonant cavities will be created by replacing the ordinary rods via defect rod made of nonlinear material such as doped glass. Plane-wave expansion and finite difference time domain methods will be used for simulating the proposed structure. For the proposed structure, the maximum delay time is about 3 ps.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)CrossRef John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)CrossRef
2.
Zurück zum Zitat Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)CrossRef Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)CrossRef
3.
Zurück zum Zitat Wang, Y., Chen, D., Zhang, G., Wang, J., Tao, S.: A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors. Opt. Commun. 363, 13–20 (2016)CrossRef Wang, Y., Chen, D., Zhang, G., Wang, J., Tao, S.: A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors. Opt. Commun. 363, 13–20 (2016)CrossRef
4.
Zurück zum Zitat Mehdizadeh, F., Soroosh, M.: A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photonic Netw. Commun. 31, 65–70 (2016)CrossRef Mehdizadeh, F., Soroosh, M.: A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photonic Netw. Commun. 31, 65–70 (2016)CrossRef
5.
Zurück zum Zitat Notomi, M., Shinya, A., Mitsugi, S., Kira, G., Kuramochi, E., Tanabe, T.: Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express 13, 2678 (2005)CrossRef Notomi, M., Shinya, A., Mitsugi, S., Kira, G., Kuramochi, E., Tanabe, T.: Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express 13, 2678 (2005)CrossRef
6.
Zurück zum Zitat Bao, J., Xiao, J., Fan, L., Li, X., Hai, Y., Zhang, T., Yang, C.: All-optical NOR and NAND gates based on photonic crystal ring resonator. Opt. Commun. 329, 109–112 (2014)CrossRef Bao, J., Xiao, J., Fan, L., Li, X., Hai, Y., Zhang, T., Yang, C.: All-optical NOR and NAND gates based on photonic crystal ring resonator. Opt. Commun. 329, 109–112 (2014)CrossRef
7.
Zurück zum Zitat Noori, M., Soroosh, M.: A comprehensive comparison of photonic band gap and self-collimation based 2D square array waveguides. Opt. Int. J. Light Electron Opt. 126, 4775–4781 (2015)CrossRef Noori, M., Soroosh, M.: A comprehensive comparison of photonic band gap and self-collimation based 2D square array waveguides. Opt. Int. J. Light Electron Opt. 126, 4775–4781 (2015)CrossRef
8.
Zurück zum Zitat Liu, D., Gao, Y., Tong, A., Hu, S.: Absolute photonic band gap in 2D honeycomb annular photonic crystals. Phys. Lett. A 379, 214–217 (2015)CrossRef Liu, D., Gao, Y., Tong, A., Hu, S.: Absolute photonic band gap in 2D honeycomb annular photonic crystals. Phys. Lett. A 379, 214–217 (2015)CrossRef
9.
Zurück zum Zitat Alipour-Banaei, H., Mehdizadeh, F.: Bandgap calculation of 2D hexagonal photonic crystal structures based on regression analysis. J. Opt. Commun. 34, 1–9 (2013)CrossRef Alipour-Banaei, H., Mehdizadeh, F.: Bandgap calculation of 2D hexagonal photonic crystal structures based on regression analysis. J. Opt. Commun. 34, 1–9 (2013)CrossRef
10.
Zurück zum Zitat Diaz-Valencia, B.F., Calero, J.M.: Photonic band gaps of a two-dimensional square lattice composed by superconducting hollow rods. Phys. C Supercond. 505, 74–79 (2014)CrossRef Diaz-Valencia, B.F., Calero, J.M.: Photonic band gaps of a two-dimensional square lattice composed by superconducting hollow rods. Phys. C Supercond. 505, 74–79 (2014)CrossRef
11.
Zurück zum Zitat Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F., Andalib, A.: Band gap properties of two-dimensional photonic crystal structures with rectangular lattice. J. Opt. Commun. 36, 109 (2015)CrossRef Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F., Andalib, A.: Band gap properties of two-dimensional photonic crystal structures with rectangular lattice. J. Opt. Commun. 36, 109 (2015)CrossRef
12.
Zurück zum Zitat Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A new proposal for PCRR-based channel drop filter using elliptical rings. Phys. E Low Dimens. Syst. Nanostructures 56, 211–215 (2014)CrossRef Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A new proposal for PCRR-based channel drop filter using elliptical rings. Phys. E Low Dimens. Syst. Nanostructures 56, 211–215 (2014)CrossRef
13.
Zurück zum Zitat Alipour-Banaei, H., Jahanara, M., Mehdizadeh, F.: T-shaped channel drop filter based on photonic crystal ring resonator. Opt. Int. J. Light Electron Opt. 125, 5348–5351 (2014)CrossRef Alipour-Banaei, H., Jahanara, M., Mehdizadeh, F.: T-shaped channel drop filter based on photonic crystal ring resonator. Opt. Int. J. Light Electron Opt. 125, 5348–5351 (2014)CrossRef
14.
Zurück zum Zitat Djavid, M., Ghaffari, A., Monifi, F., Abrishamian, M.S.: T-shaped channel-drop filters using photonic crystal ring resonators. Phys. E Low Dimens. Syst. Nanostructures 40, 3151–3154 (2008)CrossRef Djavid, M., Ghaffari, A., Monifi, F., Abrishamian, M.S.: T-shaped channel-drop filters using photonic crystal ring resonators. Phys. E Low Dimens. Syst. Nanostructures 40, 3151–3154 (2008)CrossRef
15.
Zurück zum Zitat Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Channel-drop filter based on a photonic crystal ring resonator. J. Opt. 15, 075401 (2013)CrossRef Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Channel-drop filter based on a photonic crystal ring resonator. J. Opt. 15, 075401 (2013)CrossRef
16.
Zurück zum Zitat Youcef Mahmoud, M., Bassou, G., Taalbi, A.: A new optical add–drop filter based on two-dimensional photonic crystal ring resonator. Opt. Int. J. Light Electron Opt. 124, 2864–2867 (2013)CrossRef Youcef Mahmoud, M., Bassou, G., Taalbi, A.: A new optical add–drop filter based on two-dimensional photonic crystal ring resonator. Opt. Int. J. Light Electron Opt. 124, 2864–2867 (2013)CrossRef
17.
Zurück zum Zitat Ren, C., Wang, P., Cheng, L., Feng, S., Gan, L., Li, Z.: Multichannel W3 Y-branch filter in a two dimensional triangular-lattice photonic crystal slab. Opt. Int. J. Light Electron Opt. 125, 7203–7206 (2014)CrossRef Ren, C., Wang, P., Cheng, L., Feng, S., Gan, L., Li, Z.: Multichannel W3 Y-branch filter in a two dimensional triangular-lattice photonic crystal slab. Opt. Int. J. Light Electron Opt. 125, 7203–7206 (2014)CrossRef
18.
Zurück zum Zitat Sahel, S., Amri, R., Bouaziz, L., Gamra, D., Lejeune, M., Benlahsen, M., Zellama, K., Bouchriha, H.: Optical filters using Cantor quasi-periodic one dimensional photonic crystal based on Si/SiO2. Superlattices Microstruct. 97, 429–438 (2016)CrossRef Sahel, S., Amri, R., Bouaziz, L., Gamra, D., Lejeune, M., Benlahsen, M., Zellama, K., Bouchriha, H.: Optical filters using Cantor quasi-periodic one dimensional photonic crystal based on Si/SiO2. Superlattices Microstruct. 97, 429–438 (2016)CrossRef
19.
Zurück zum Zitat Dideban, A., Habibiyan, H., Ghafoorifard, H.: Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems. Phys. E Low Dimens. Syst. Nanostructures 87, 77–83 (2017)CrossRef Dideban, A., Habibiyan, H., Ghafoorifard, H.: Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems. Phys. E Low Dimens. Syst. Nanostructures 87, 77–83 (2017)CrossRef
20.
Zurück zum Zitat Qiang, Z., Zhou, W., Soref, R.a: Optical add-drop filters based on photonic crystal ring resonators. Opt. Express 15, 1823–1831 (2007)CrossRef Qiang, Z., Zhou, W., Soref, R.a: Optical add-drop filters based on photonic crystal ring resonators. Opt. Express 15, 1823–1831 (2007)CrossRef
21.
Zurück zum Zitat Alipour-Banaei, H., Hassangholizadeh-Kashtiban, M., Mehdizadeh, F.: WDM and DWDM optical filter based on 2D photonic crystal Thue–Morse structure. Opt. Int. J. Light Electron Opt. 124, 4416–4420 (2013)CrossRef Alipour-Banaei, H., Hassangholizadeh-Kashtiban, M., Mehdizadeh, F.: WDM and DWDM optical filter based on 2D photonic crystal Thue–Morse structure. Opt. Int. J. Light Electron Opt. 124, 4416–4420 (2013)CrossRef
22.
Zurück zum Zitat Jiu-Sheng, L., Han, L., Le, Z.: Compact four-channel terahertz demultiplexer based on directional coupling photonic crystal. Opt. Commun. 350, 248–251 (2015)CrossRef Jiu-Sheng, L., Han, L., Le, Z.: Compact four-channel terahertz demultiplexer based on directional coupling photonic crystal. Opt. Commun. 350, 248–251 (2015)CrossRef
23.
Zurück zum Zitat Gupta, N.D., Janyani, V.: Dense wavelength division demultiplexing using photonic crystal waveguides based on cavity resonance. Opt. Int. J. Light Electron Opt. 125, 5833–5836 (2014)CrossRef Gupta, N.D., Janyani, V.: Dense wavelength division demultiplexing using photonic crystal waveguides based on cavity resonance. Opt. Int. J. Light Electron Opt. 125, 5833–5836 (2014)CrossRef
24.
Zurück zum Zitat Rostami, A., Nazari, F., Banaei, H.A., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostructures Fundam. Appl. 8, 14–22 (2010)CrossRef Rostami, A., Nazari, F., Banaei, H.A., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostructures Fundam. Appl. 8, 14–22 (2010)CrossRef
25.
Zurück zum Zitat Reza Rakhshani, M., Ali Mansouri-Birjandi, M.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low Dimens. Syst. Nanostructures 50, 97–101 (2013)CrossRef Reza Rakhshani, M., Ali Mansouri-Birjandi, M.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low Dimens. Syst. Nanostructures 50, 97–101 (2013)CrossRef
26.
Zurück zum Zitat Talebzadeh, R., Soroosh, M., Daghooghi, T.: A 4-channel demultiplexer based on 2D photonic crystal using line defect resonant cavity. IETE J. Res. 62, 866–872 (2016)CrossRef Talebzadeh, R., Soroosh, M., Daghooghi, T.: A 4-channel demultiplexer based on 2D photonic crystal using line defect resonant cavity. IETE J. Res. 62, 866–872 (2016)CrossRef
27.
Zurück zum Zitat Mehdizadeh, F., Soroosh, M.: A novel proposal for all optical demultiplexers based on photonic crystal. Optoelectron. Adv. Mater. Commun. 9, 324–328 (2015) Mehdizadeh, F., Soroosh, M.: A novel proposal for all optical demultiplexers based on photonic crystal. Optoelectron. Adv. Mater. Commun. 9, 324–328 (2015)
28.
Zurück zum Zitat Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 124, 5964–5967 (2013)CrossRefMATH Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 124, 5964–5967 (2013)CrossRefMATH
29.
Zurück zum Zitat Djavid, M., Monifi, F., Ghaffari, A., Abrishamian, M.S.: Heterostructure wavelength division demultiplexers using photonic crystal ring resonators. Opt. Commun. 281, 4028–4032 (2008)CrossRef Djavid, M., Monifi, F., Ghaffari, A., Abrishamian, M.S.: Heterostructure wavelength division demultiplexers using photonic crystal ring resonators. Opt. Commun. 281, 4028–4032 (2008)CrossRef
30.
Zurück zum Zitat Mansouri-Birjandi, M.A., Rakhshani, M.R.: A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 124, 5923–5926 (2013)CrossRef Mansouri-Birjandi, M.A., Rakhshani, M.R.: A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 124, 5923–5926 (2013)CrossRef
31.
Zurück zum Zitat Momeni, B., Huang, J., Soltani, M., Askari, M., Mohammadi, S., Rakhshandehroo, M., Adibi, A.: Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms. Opt. Express 14, 2413 (2006)CrossRef Momeni, B., Huang, J., Soltani, M., Askari, M., Mohammadi, S., Rakhshandehroo, M., Adibi, A.: Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms. Opt. Express 14, 2413 (2006)CrossRef
32.
33.
Zurück zum Zitat Rawal, S., Sinha, R.K.: Design, analysis and optimization of silicon-on-insulator photonic crystal dual band wavelength demultiplexer. Opt. Commun. 282, 3889–3894 (2009)CrossRef Rawal, S., Sinha, R.K.: Design, analysis and optimization of silicon-on-insulator photonic crystal dual band wavelength demultiplexer. Opt. Commun. 282, 3889–3894 (2009)CrossRef
34.
Zurück zum Zitat Bazargani, H.P.: Proposal for a 4-channel all optical demultiplexer using 12-fold photonic quasicrystal. Opt. Commun. 285, 1848–1853 (2012)CrossRef Bazargani, H.P.: Proposal for a 4-channel all optical demultiplexer using 12-fold photonic quasicrystal. Opt. Commun. 285, 1848–1853 (2012)CrossRef
35.
Zurück zum Zitat Qing-Hua, L., Hong-Ming, F., Shu-Wen, C., Tong-Biao, W., Tian-Bao, Y., Yong-Zhen, H.: The design of large separating angle ultracompact wavelength division demultiplexer based on photonic crystal ring resonators. Opt. Commun. 331, 160–164 (2014)CrossRef Qing-Hua, L., Hong-Ming, F., Shu-Wen, C., Tong-Biao, W., Tian-Bao, Y., Yong-Zhen, H.: The design of large separating angle ultracompact wavelength division demultiplexer based on photonic crystal ring resonators. Opt. Commun. 331, 160–164 (2014)CrossRef
36.
Zurück zum Zitat Khorshidahmad, A., Kirk, A.G.: Composite superprism photonic crystal demultiplexer: analysis and design. Opt. Express 18, 20518–28 (2010)CrossRef Khorshidahmad, A., Kirk, A.G.: Composite superprism photonic crystal demultiplexer: analysis and design. Opt. Express 18, 20518–28 (2010)CrossRef
37.
Zurück zum Zitat Sharkawy, A., Shi, S., Prather, D.W., Soref, R.A.: Electro-optical switching using coupled photonic crystal waveguides. Opt. Express 10, 1048 (2002)CrossRef Sharkawy, A., Shi, S., Prather, D.W., Soref, R.A.: Electro-optical switching using coupled photonic crystal waveguides. Opt. Express 10, 1048 (2002)CrossRef
38.
Zurück zum Zitat Selim, R., Pinto, D., Obayya, S.S.A.: Novel fast photonic crystal multiplexer–demultiplexer switches. Opt. Quantum Electron. 42, 425–433 (2011)CrossRef Selim, R., Pinto, D., Obayya, S.S.A.: Novel fast photonic crystal multiplexer–demultiplexer switches. Opt. Quantum Electron. 42, 425–433 (2011)CrossRef
39.
Zurück zum Zitat Camargo, E.A., Chong, H.M.H., Rue, RMDLa: 2D Photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure. Opt. Express 12, 588–592 (2004)CrossRef Camargo, E.A., Chong, H.M.H., Rue, RMDLa: 2D Photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure. Opt. Express 12, 588–592 (2004)CrossRef
40.
Zurück zum Zitat Teo, H.G., Liu, A.Q., Singh, J., Yu, M.B., Bourouina, T.: Design and simulation of MEMS optical switch using photonic bandgap crystal. Microsyst. Technol. 10, 400–406 (2004)CrossRef Teo, H.G., Liu, A.Q., Singh, J., Yu, M.B., Bourouina, T.: Design and simulation of MEMS optical switch using photonic bandgap crystal. Microsyst. Technol. 10, 400–406 (2004)CrossRef
41.
Zurück zum Zitat Singh, B.R., Rawal, S.: Photonic-crystal-based all-optical NOT logic gate. J. Opt. Soc. Am. A 32, 2260–2263 (2015)CrossRef Singh, B.R., Rawal, S.: Photonic-crystal-based all-optical NOT logic gate. J. Opt. Soc. Am. A 32, 2260–2263 (2015)CrossRef
42.
Zurück zum Zitat Sharifi, H., Hamidi, S.M., Navi, K.: A new design procedure for all-optical photonic crystal logic gates and functions based on threshold logic. Opt. Commun. 370, 231–238 (2016)CrossRef Sharifi, H., Hamidi, S.M., Navi, K.: A new design procedure for all-optical photonic crystal logic gates and functions based on threshold logic. Opt. Commun. 370, 231–238 (2016)CrossRef
43.
Zurück zum Zitat Husko, C., Vo, T.D., Corcoran, B., Li, J., Krauss, T.F., Eggleton, B.J.: Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide. In: 2011 international quantum electronics conference (IQEC) and conference on lasers and electro-optics (CLEO) Pacific Rim Inc. Australasian conference on optics, lasers and spectroscopy and the australian conference on optical fibre technology, vol. 19, pp. 158–159 (2011) Husko, C., Vo, T.D., Corcoran, B., Li, J., Krauss, T.F., Eggleton, B.J.: Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide. In: 2011 international quantum electronics conference (IQEC) and conference on lasers and electro-optics (CLEO) Pacific Rim Inc. Australasian conference on optics, lasers and spectroscopy and the australian conference on optical fibre technology, vol. 19, pp. 158–159 (2011)
44.
Zurück zum Zitat Jung, Y.J., Yu, S., Koo, S., Yu, H., Han, S., Park, N., Kim, J.H., Jhon, Y.M., Lee, S.: Reconfigurable all-optical logic AND, NAND, OR, NOR, XOR and XNOR gates implemented by photonic crystal nonlinear cavities. In: Conference on lasers and electro-optics/Pacific Rim, p. TuB4_3. Optical Society of America (2009) Jung, Y.J., Yu, S., Koo, S., Yu, H., Han, S., Park, N., Kim, J.H., Jhon, Y.M., Lee, S.: Reconfigurable all-optical logic AND, NAND, OR, NOR, XOR and XNOR gates implemented by photonic crystal nonlinear cavities. In: Conference on lasers and electro-optics/Pacific Rim, p. TuB4_3. Optical Society of America (2009)
45.
Zurück zum Zitat haq Shaik, E., Rangaswamy, N.: Improved design of all-optical photonic crystal logic gates using T-shaped waveguide. Opt. Quantum Electron. 48, 1–15 (2016)CrossRef haq Shaik, E., Rangaswamy, N.: Improved design of all-optical photonic crystal logic gates using T-shaped waveguide. Opt. Quantum Electron. 48, 1–15 (2016)CrossRef
46.
Zurück zum Zitat Rani, P., Kalra, Y., Sinha, R.K.: Design of all optical logic gates in photonic crystal waveguides. Opt. Int. J. Light Electron Opt. 126, 950–955 (2015)CrossRef Rani, P., Kalra, Y., Sinha, R.K.: Design of all optical logic gates in photonic crystal waveguides. Opt. Int. J. Light Electron Opt. 126, 950–955 (2015)CrossRef
47.
Zurück zum Zitat Moniem, T.A.: All optical active high decoder using integrated 2D square lattice photonic crystals. J. Mod. Opt. 62, 1643–1649 (2015)CrossRef Moniem, T.A.: All optical active high decoder using integrated 2D square lattice photonic crystals. J. Mod. Opt. 62, 1643–1649 (2015)CrossRef
48.
Zurück zum Zitat Alipour-Banaei, H., Rabati, M.G., Abdollahzadeh-Badelbou, P., Mehdizadeh, F.: Effect of self-collimated beams on the operation of photonic crystal decoders. J. Electromagn. Waves Appl. 30, 1440–1448 (2016)CrossRef Alipour-Banaei, H., Rabati, M.G., Abdollahzadeh-Badelbou, P., Mehdizadeh, F.: Effect of self-collimated beams on the operation of photonic crystal decoders. J. Electromagn. Waves Appl. 30, 1440–1448 (2016)CrossRef
49.
Zurück zum Zitat Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A novel proposal for optical decoder switch based on photonic crystal ring resonators. Opt. Quantum Electron. 48, 20 (2015)CrossRef Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A novel proposal for optical decoder switch based on photonic crystal ring resonators. Opt. Quantum Electron. 48, 20 (2015)CrossRef
50.
Zurück zum Zitat Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quantum Electron. 47, 1109–1115 (2014)CrossRefMATH Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quantum Electron. 47, 1109–1115 (2014)CrossRefMATH
51.
Zurück zum Zitat Moniem, T.A.: All-optical digital 4 \(\times \) 2 encoder based on 2D photonic crystal ring resonators. J. Mod. Opt. 63, 735–741 (2016)CrossRef Moniem, T.A.: All-optical digital 4 \(\times \) 2 encoder based on 2D photonic crystal ring resonators. J. Mod. Opt. 63, 735–741 (2016)CrossRef
52.
Zurück zum Zitat Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: All optical NAND gate based on nonlinear photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 130, 1214–1221 (2017)CrossRefMATH Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: All optical NAND gate based on nonlinear photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 130, 1214–1221 (2017)CrossRefMATH
53.
Zurück zum Zitat Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: All optical NOR and NAND gate based on nonlinear photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 125, 5701–5704 (2014)CrossRef Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: All optical NOR and NAND gate based on nonlinear photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 125, 5701–5704 (2014)CrossRef
54.
Zurück zum Zitat Mehdizadeh, F., Soroosh, M.: Designing of all optical NOR gate based on photonic crystal. Indian J. Pure Appl. Phys. 54, 35–39 (2016) Mehdizadeh, F., Soroosh, M.: Designing of all optical NOR gate based on photonic crystal. Indian J. Pure Appl. Phys. 54, 35–39 (2016)
55.
Zurück zum Zitat Tavousi, A., Mansouri-Birjandi, M.A., Saffari, M.: Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators. Physica E Low Dimens. Syst. Nanostruct. 83, 101–106 (2016) Tavousi, A., Mansouri-Birjandi, M.A., Saffari, M.: Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators. Physica E Low Dimens. Syst. Nanostruct. 83, 101–106 (2016)
56.
Zurück zum Zitat Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: All optical 2-bit analog to digital converter using photonic crystal based cavities. Opt. Quantum Electron. 49, 38 (2017)CrossRef Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: All optical 2-bit analog to digital converter using photonic crystal based cavities. Opt. Quantum Electron. 49, 38 (2017)CrossRef
57.
Zurück zum Zitat Miao, B., Chen, C., Sharkway, A., Shi, S., Prather, D.W.: Two bit optical analog-to-digital converter based on photonic crystals. Opt. Express 14, 7966 (2006)CrossRef Miao, B., Chen, C., Sharkway, A., Shi, S., Prather, D.W.: Two bit optical analog-to-digital converter based on photonic crystals. Opt. Express 14, 7966 (2006)CrossRef
58.
Zurück zum Zitat Youssefi, B., Moravvej-Farshi, M.K., Granpayeh, N.: Two bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals. Opt. Commun. 285, 3228–3233 (2012)CrossRef Youssefi, B., Moravvej-Farshi, M.K., Granpayeh, N.: Two bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals. Opt. Commun. 285, 3228–3233 (2012)CrossRef
59.
Zurück zum Zitat Fasihi, K.: All-optical analog-to-digital converters based on cascaded 3-dB power splitters in 2D photonic crystals. Opt. Int. J. Light Electron Opt. 125, 6520–6523 (2014)CrossRef Fasihi, K.: All-optical analog-to-digital converters based on cascaded 3-dB power splitters in 2D photonic crystals. Opt. Int. J. Light Electron Opt. 125, 6520–6523 (2014)CrossRef
60.
Zurück zum Zitat Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure. Appl. Opt. 56, 1799–1806 (2017)CrossRef Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure. Appl. Opt. 56, 1799–1806 (2017)CrossRef
61.
Zurück zum Zitat Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photonics J. 9, 1–11 (2017)CrossRef Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photonics J. 9, 1–11 (2017)CrossRef
62.
Zurück zum Zitat Parandin, F., Karkhanehchi, M.M.: Terahertz all-optical NOR and AND logic gates based on 2D photonic crystals. Superlattices Microstruct. 101, 253–260 (2017) Parandin, F., Karkhanehchi, M.M.: Terahertz all-optical NOR and AND logic gates based on 2D photonic crystals. Superlattices Microstruct. 101, 253–260 (2017)
63.
Zurück zum Zitat Wu, K.-S., Dong, J.-W., Chen, D.-H., Luo, X.-N., Wang, H.-Z.: Sensitive photonic crystal phase logic gates. J. Mod. Opt. 56, 1895–1898 (2009)CrossRef Wu, K.-S., Dong, J.-W., Chen, D.-H., Luo, X.-N., Wang, H.-Z.: Sensitive photonic crystal phase logic gates. J. Mod. Opt. 56, 1895–1898 (2009)CrossRef
64.
Zurück zum Zitat Liu, Y., Qin, F., Meng, Z.-M., Zhou, F., Mao, Q.-H., Li, Z.-Y.: All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs. Opt. Express 19, 1945–53 (2011)CrossRef Liu, Y., Qin, F., Meng, Z.-M., Zhou, F., Mao, Q.-H., Li, Z.-Y.: All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs. Opt. Express 19, 1945–53 (2011)CrossRef
65.
Zurück zum Zitat Jiang, Y.-C., Liu, S.-B., Zhang, H.-F., Kong, X.-K.: Realization of all optical half-adder based on self-collimated beams by two-dimensional photonic crystals. Opt. Commun. 348, 90–94 (2015)CrossRef Jiang, Y.-C., Liu, S.-B., Zhang, H.-F., Kong, X.-K.: Realization of all optical half-adder based on self-collimated beams by two-dimensional photonic crystals. Opt. Commun. 348, 90–94 (2015)CrossRef
66.
Zurück zum Zitat Liu, Q., Ouyang, Z., Wu, C.J., Liu, C.P., Wang, J.C.: All-optical half adder based on cross structures in two-dimensional photonic crystals. Opt. Express 16, 18992–9000 (2008)CrossRef Liu, Q., Ouyang, Z., Wu, C.J., Liu, C.P., Wang, J.C.: All-optical half adder based on cross structures in two-dimensional photonic crystals. Opt. Express 16, 18992–9000 (2008)CrossRef
67.
Zurück zum Zitat Xavier, S.C., Arunachalam, K., Caroline, E., Johnson, W.: Design of two-dimensional photonic crystal-based all-optical binary adder. Opt. Eng. 52, 25201 (2013)CrossRef Xavier, S.C., Arunachalam, K., Caroline, E., Johnson, W.: Design of two-dimensional photonic crystal-based all-optical binary adder. Opt. Eng. 52, 25201 (2013)CrossRef
68.
Zurück zum Zitat Karkhanehchi, M.M., Parandin, F., Zahedi, A.: Design of an all optical half-adder based on 2D photonic crystals. Photonic Netw. Commun. 33, 159–165 (2017) Karkhanehchi, M.M., Parandin, F., Zahedi, A.: Design of an all optical half-adder based on 2D photonic crystals. Photonic Netw. Commun. 33, 159–165 (2017)
69.
Zurück zum Zitat Alipour-Banaei, H., Mehdizadeh, F.: Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Opt. Int. J. Light Electron Opt. 124, 2639–2644 (2013) Alipour-Banaei, H., Mehdizadeh, F.: Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Opt. Int. J. Light Electron Opt. 124, 2639–2644 (2013)
70.
Zurück zum Zitat Alipour-Banaei, H., Seif-Dargahi, H.: Photonic crystal based 1-bit full-adder optical circuit by using ring resonators in a nonlinear structure. Photonics Nanostructures Fundam. Appl. 24, 29–34 (2017) Alipour-Banaei, H., Seif-Dargahi, H.: Photonic crystal based 1-bit full-adder optical circuit by using ring resonators in a nonlinear structure. Photonics Nanostructures Fundam. Appl. 24, 29–34 (2017)
71.
Zurück zum Zitat Liu, Q., Ouyang, Z., Wu, C.J., Liu, C.P., Wang, J.C.: All-optical half adder based on cross structures in two-dimensional photonic crystals. Opt. Express 16, 18992–19000 (2008)CrossRef Liu, Q., Ouyang, Z., Wu, C.J., Liu, C.P., Wang, J.C.: All-optical half adder based on cross structures in two-dimensional photonic crystals. Opt. Express 16, 18992–19000 (2008)CrossRef
Metadaten
Titel
All optical half adder based on photonic crystal resonant cavities
verfasst von
Mona Neisy
Mohammad Soroosh
Karim Ansari-Asl
Publikationsdatum
07.09.2017
Verlag
Springer US
Erschienen in
Photonic Network Communications / Ausgabe 2/2018
Print ISSN: 1387-974X
Elektronische ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-017-0736-6

Weitere Artikel der Ausgabe 2/2018

Photonic Network Communications 2/2018 Zur Ausgabe

Neuer Inhalt