Skip to main content

2015 | OriginalPaper | Buchkapitel

5. All-Polymer Solar Cells Based on Organometallic Polymers

verfasst von : Tsuyoshi Michinobu

Erschienen in: Organometallics and Related Molecules for Energy Conversion

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bulk-heterojunction (BHJ) solar cells using n-type semiconducting polymers, instead of the conventional fullerene derivatives, are known as all-polymer solar cells. Their significant advantages include designable structures of both p-type and n-type semiconducting polymers. In this chapter, recent advances in all-polymer solar cells are introduced. Particular attention is focused on the development of high-performance n-type semiconducting polymers. However, organometallic polymers have generally been employed as p-type semiconductors in BHJ solar cells. Therefore, there are a few examples of all-polymer solar cells based on organometallic polymers. In order to solve this problem, a novel method of inverting the semiconducting feature is applied to produce promising Pt-polyyne polymers with potentially n-type energy levels. The main chain alkynes of the precursor Pt-polyyne polymers are modified by the high-yielding transformation into tetracyanobutadiene units through a [2 + 2] cycloaddition-retroelectrocyclization with tetracyanoethylene (TCNE). All-polymer solar cells composed of the p-type poly(3-hexylthiophene) (P3HT) and n-type Pt-polyyne polymer are successfully fabricated, and the photocurrent generation is demonstrated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Thompson BC, Fréchet JMJ (2008) Polymer-fullerene composite solar cells. Angew Chem Int Ed 47:58–77CrossRef Thompson BC, Fréchet JMJ (2008) Polymer-fullerene composite solar cells. Angew Chem Int Ed 47:58–77CrossRef
2.
Zurück zum Zitat Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21:1323–1338CrossRef Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21:1323–1338CrossRef
3.
Zurück zum Zitat Brabec CJ, Gowrisanker S, Malls JJM, Laird D, Jia S, Williams SP (2010) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 22:3839–3856CrossRef Brabec CJ, Gowrisanker S, Malls JJM, Laird D, Jia S, Williams SP (2010) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 22:3839–3856CrossRef
4.
Zurück zum Zitat Dang MT, Hirsch L, Wantz G (2011) P3HT:PCBM, best seller in polymer photovoltaic research. Adv Mater 23:3597–3602CrossRef Dang MT, Hirsch L, Wantz G (2011) P3HT:PCBM, best seller in polymer photovoltaic research. Adv Mater 23:3597–3602CrossRef
5.
Zurück zum Zitat He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photon 6:591–595 He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photon 6:591–595
6.
Zurück zum Zitat You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen CC, Gao J, Li G, Yang Y (2013) A polymer tandem solar cell with 10.6 % power conversion efficiency. Nat Commun 4:1446CrossRef You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen CC, Gao J, Li G, Yang Y (2013) A polymer tandem solar cell with 10.6 % power conversion efficiency. Nat Commun 4:1446CrossRef
7.
Zurück zum Zitat Zhang Y, Zhou H, Seifter J, Ying L, Mikhailovsky A, Heeger AJ, Bazan GC, Nguyen TQ (2013) Molecular doping enhances photoconductivity in polymer bulk heterojunction solar cells. Adv Mater 25:7038–7044CrossRef Zhang Y, Zhou H, Seifter J, Ying L, Mikhailovsky A, Heeger AJ, Bazan GC, Nguyen TQ (2013) Molecular doping enhances photoconductivity in polymer bulk heterojunction solar cells. Adv Mater 25:7038–7044CrossRef
8.
Zurück zum Zitat Facchetti A (2013) Polymer donor-polymer acceptor (all-polymer) solar cells. Mater Today 16:123–132CrossRef Facchetti A (2013) Polymer donor-polymer acceptor (all-polymer) solar cells. Mater Today 16:123–132CrossRef
9.
Zurück zum Zitat Stalder R, Mei J, Graham KR, Estrada LA, Reynolds JR (2014) Isoindigo, a versatile electron-deficient unit for high-performance organic electronics. Chem Mater 26:664–678CrossRef Stalder R, Mei J, Graham KR, Estrada LA, Reynolds JR (2014) Isoindigo, a versatile electron-deficient unit for high-performance organic electronics. Chem Mater 26:664–678CrossRef
10.
Zurück zum Zitat Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Efficient photodiodes from interpenetrating polymer networks. Nature 376:498–500CrossRef Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Efficient photodiodes from interpenetrating polymer networks. Nature 376:498–500CrossRef
11.
Zurück zum Zitat Granström M, Petritsch K, Arias AC, Lux A, Andersson MR, Friend RH (1998) Laminated fabrication of polymeric photovoltaic diodes. Nature 395:257–260CrossRef Granström M, Petritsch K, Arias AC, Lux A, Andersson MR, Friend RH (1998) Laminated fabrication of polymeric photovoltaic diodes. Nature 395:257–260CrossRef
12.
Zurück zum Zitat Holcombe TW, Woo CH, Kavulak DFJ, Thompson BC, Fréchet JMJ (2009) All-polymer photovoltaic devices of poly(3-(4-n-octyl)-phenylthiophene) from Grignard metathesis (GRIM) polymerization. J Am Chem Soc 131:14160–14161CrossRef Holcombe TW, Woo CH, Kavulak DFJ, Thompson BC, Fréchet JMJ (2009) All-polymer photovoltaic devices of poly(3-(4-n-octyl)-phenylthiophene) from Grignard metathesis (GRIM) polymerization. J Am Chem Soc 131:14160–14161CrossRef
13.
Zurück zum Zitat Zhan X, Tan Z, Zhou E, Li Y, Misra R, Grant A, Domercq B, Zhang XH, An Z, Zhang X, Barlow S, Kippelen B, Marder SR (2009) Copolymers of perylene diimide with dithienothiophene and dithienopyrrole as electron-transport materials for all-polymer solar cells and field-effect transistors. J Mater Chem 19:5794–5803CrossRef Zhan X, Tan Z, Zhou E, Li Y, Misra R, Grant A, Domercq B, Zhang XH, An Z, Zhang X, Barlow S, Kippelen B, Marder SR (2009) Copolymers of perylene diimide with dithienothiophene and dithienopyrrole as electron-transport materials for all-polymer solar cells and field-effect transistors. J Mater Chem 19:5794–5803CrossRef
14.
Zurück zum Zitat Zhou E, Cong J, Hashimoto K, Tajima K (2013) Control of miscibility and aggregation via the material design and coating process for high-performance polymer blend solar cells. Adv Mater 25:6991–6996CrossRef Zhou E, Cong J, Hashimoto K, Tajima K (2013) Control of miscibility and aggregation via the material design and coating process for high-performance polymer blend solar cells. Adv Mater 25:6991–6996CrossRef
15.
Zurück zum Zitat Earmme T, Hwang YJ, Murari NM, Subramaniyan S, Jenekhe SA (2013) All-polymer solar cells with 3.3 % efficiency based on naphthalene diimide-selenophene copolymer acceptor. J Am Chem Soc 135:14960–14963CrossRef Earmme T, Hwang YJ, Murari NM, Subramaniyan S, Jenekhe SA (2013) All-polymer solar cells with 3.3 % efficiency based on naphthalene diimide-selenophene copolymer acceptor. J Am Chem Soc 135:14960–14963CrossRef
16.
Zurück zum Zitat Salim T, Sun S, Wong LH, Xi L, Foo YL, Lam YM (2010) The role of poly(3-hexylthiophene) nanofibers in an all-polymer blend with a polyfluorene copolymer for solar cell applications. J Phys Chem C 114:9459–9468CrossRef Salim T, Sun S, Wong LH, Xi L, Foo YL, Lam YM (2010) The role of poly(3-hexylthiophene) nanofibers in an all-polymer blend with a polyfluorene copolymer for solar cell applications. J Phys Chem C 114:9459–9468CrossRef
17.
Zurück zum Zitat Mori D, Benten H, Ohkita H, Ito S, Miyake K (2012) Polymer/polymer blend solar cells improved by using high-molecular-weight fluorene-based copolymer as electron acceptor. ACS Appl Mater Interfaces 4:3325–3329CrossRef Mori D, Benten H, Ohkita H, Ito S, Miyake K (2012) Polymer/polymer blend solar cells improved by using high-molecular-weight fluorene-based copolymer as electron acceptor. ACS Appl Mater Interfaces 4:3325–3329CrossRef
18.
Zurück zum Zitat Cao Y, Lei T, Yuan J, Wang JY, Pei J (2013) Dithiazolyl-benzothiadiazole-containing polymer acceptors: synthesis, characterization, and all-polymer solar cells. Polym Chem 4:5228–5236CrossRef Cao Y, Lei T, Yuan J, Wang JY, Pei J (2013) Dithiazolyl-benzothiadiazole-containing polymer acceptors: synthesis, characterization, and all-polymer solar cells. Polym Chem 4:5228–5236CrossRef
19.
Zurück zum Zitat Sang G, Zou Y, Huang Y, Zhao G, Yang Y, Li Y (2009) All-polymer solar cells based on a blend of poly[3-(10-n-octyl-3-phenothiazine-vinylene)thiophene-co-2,5-thiophene] and poly[1,4-dioctyloxyl-p-2,5-dicyanophenylenevinylene]. Appl Phys Lett 94:193302-1–193302-3CrossRef Sang G, Zou Y, Huang Y, Zhao G, Yang Y, Li Y (2009) All-polymer solar cells based on a blend of poly[3-(10-n-octyl-3-phenothiazine-vinylene)thiophene-co-2,5-thiophene] and poly[1,4-dioctyloxyl-p-2,5-dicyanophenylenevinylene]. Appl Phys Lett 94:193302-1–193302-3CrossRef
20.
Zurück zum Zitat Vijayakumar C, Saeki A, Seki S (2012) Optoelectronic properties of dicyanofluorene-based n-type polymers. Chem Asian J 7:1845–1852CrossRef Vijayakumar C, Saeki A, Seki S (2012) Optoelectronic properties of dicyanofluorene-based n-type polymers. Chem Asian J 7:1845–1852CrossRef
21.
Zurück zum Zitat Wong WY (2008) Metallopolyyne polymers as new functional materials for photovoltaic and solar cell applications. Macromol Chem Phys 209:14–24CrossRef Wong WY (2008) Metallopolyyne polymers as new functional materials for photovoltaic and solar cell applications. Macromol Chem Phys 209:14–24CrossRef
22.
Zurück zum Zitat Wong WY, Ho CL (2010) Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes. Acc Chem Res 43:1246–1256CrossRef Wong WY, Ho CL (2010) Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes. Acc Chem Res 43:1246–1256CrossRef
23.
Zurück zum Zitat Ho CL, Wong WY (2011) Metal-containing polymers: facile tuning of photophysical traits and emerging applications in organic electronics and photonics. Coord Chem Rev 225:2469–2502CrossRef Ho CL, Wong WY (2011) Metal-containing polymers: facile tuning of photophysical traits and emerging applications in organic electronics and photonics. Coord Chem Rev 225:2469–2502CrossRef
24.
Zurück zum Zitat Köhler A, Wittmann HF, Friend RH, Khan MS, Lewis J (1996) Enhanced photocurrent response in photocells made with platinum-poly-yne/C60 blends by photoinduced electron transfer. Synth Met 77:147–150CrossRef Köhler A, Wittmann HF, Friend RH, Khan MS, Lewis J (1996) Enhanced photocurrent response in photocells made with platinum-poly-yne/C60 blends by photoinduced electron transfer. Synth Met 77:147–150CrossRef
25.
Zurück zum Zitat Guo F, Kim YG, Reynolds JR, Schanze KS (2006) Platinum-acetylide polymer based solar cells: involvement of the triplet state for energy conversion. Chem Commun 42:1887–1889 Guo F, Kim YG, Reynolds JR, Schanze KS (2006) Platinum-acetylide polymer based solar cells: involvement of the triplet state for energy conversion. Chem Commun 42:1887–1889
26.
Zurück zum Zitat Wong WY, Wang XZ, He Z, Djurišić AB, Yip CT, Cheung KY, Wang H, Mak CSK, Chan WK (2007) Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells. Nat Mater 6:521–527CrossRef Wong WY, Wang XZ, He Z, Djurišić AB, Yip CT, Cheung KY, Wang H, Mak CSK, Chan WK (2007) Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells. Nat Mater 6:521–527CrossRef
27.
Zurück zum Zitat Wu PT, Bull T, Kim FS, Luscombe CK, Jenekhe SA (2009) Organometallic donor-acceptor conjugated polymer semiconductors: tunable optical, electrochemical, charge transport, and photovoltaic properties. Macromolecules 42:671–681CrossRef Wu PT, Bull T, Kim FS, Luscombe CK, Jenekhe SA (2009) Organometallic donor-acceptor conjugated polymer semiconductors: tunable optical, electrochemical, charge transport, and photovoltaic properties. Macromolecules 42:671–681CrossRef
28.
Zurück zum Zitat Baek NS, Hau SK, Yip HL, Acton O, Chen KS, Jen AKY (2008) High performance amorphous metallated π-conjugated polymers for field-effect transistors and polymer solar cells. Chem Mater 20:5734–5736CrossRef Baek NS, Hau SK, Yip HL, Acton O, Chen KS, Jen AKY (2008) High performance amorphous metallated π-conjugated polymers for field-effect transistors and polymer solar cells. Chem Mater 20:5734–5736CrossRef
29.
Zurück zum Zitat Mei J, Ogawa K, Kim YG, Heston NC, Arenas DJ, Nasrollahi Z, McCarley TD, Tanner DB, Reynolds JR, Schanze KS (2009) Low-band-gap platinum acetylide polymers as active materials for organic solar cells. ACS Appl Mater Interfaces 1:150–161CrossRef Mei J, Ogawa K, Kim YG, Heston NC, Arenas DJ, Nasrollahi Z, McCarley TD, Tanner DB, Reynolds JR, Schanze KS (2009) Low-band-gap platinum acetylide polymers as active materials for organic solar cells. ACS Appl Mater Interfaces 1:150–161CrossRef
30.
Zurück zum Zitat Wong WY, Wang XZ, He Z, Chan KK, Djurišić AB, Cheung KY, Yip CT, Ng AMC, Xi YY, Mak CSK, Chan WK (2007) Tuning the absorption, charge transport properties, and solar cell efficiency with the number of thienyl rings in platinum-containing poly(aryleneethynylene)s. J Am Chem Soc 129:14372–14380CrossRef Wong WY, Wang XZ, He Z, Chan KK, Djurišić AB, Cheung KY, Yip CT, Ng AMC, Xi YY, Mak CSK, Chan WK (2007) Tuning the absorption, charge transport properties, and solar cell efficiency with the number of thienyl rings in platinum-containing poly(aryleneethynylene)s. J Am Chem Soc 129:14372–14380CrossRef
31.
Zurück zum Zitat Liu L, Ho CL, Wong WY, Cheung KY, Fung MK, Lam WT, Djurišić AB, Chan WK (2008) Effect of oligothienyl chain length on tuning the solar cell performance in fluorene-based polyplatinynes. Adv Funct Mater 18:2824–2833CrossRef Liu L, Ho CL, Wong WY, Cheung KY, Fung MK, Lam WT, Djurišić AB, Chan WK (2008) Effect of oligothienyl chain length on tuning the solar cell performance in fluorene-based polyplatinynes. Adv Funct Mater 18:2824–2833CrossRef
32.
Zurück zum Zitat Wong WY, Chow WC, Cheung KY, Fung MK, Djurišić AB, Chan WK (2009) Harvesting solar energy using conjugated metallopolyyne donors containing electron-rich phenothiazine-oligothiophene moieties. J Organomet Chem 694:2717–2726CrossRef Wong WY, Chow WC, Cheung KY, Fung MK, Djurišić AB, Chan WK (2009) Harvesting solar energy using conjugated metallopolyyne donors containing electron-rich phenothiazine-oligothiophene moieties. J Organomet Chem 694:2717–2726CrossRef
33.
Zurück zum Zitat Li L, Chow WC, Wong WY, Chui CH, Wong RSM (2011) Synthesis, characterization and photovoltaic behavior of platinum acetylide polymers with electron-deficient 9,10-anthraquinone moiety. J Organomet Chem 696:1189–1197CrossRef Li L, Chow WC, Wong WY, Chui CH, Wong RSM (2011) Synthesis, characterization and photovoltaic behavior of platinum acetylide polymers with electron-deficient 9,10-anthraquinone moiety. J Organomet Chem 696:1189–1197CrossRef
34.
Zurück zum Zitat Zhan H, Wong WY, Ng A, Djurišić AB, Chan WK (2011) Synthesis, characterization and photovoltaic properties of platinum-containing poly(aryleneethynylene) polymers with phenanthrenyl-imidazole moiety. J Organomet Chem 696:4112–4120CrossRef Zhan H, Wong WY, Ng A, Djurišić AB, Chan WK (2011) Synthesis, characterization and photovoltaic properties of platinum-containing poly(aryleneethynylene) polymers with phenanthrenyl-imidazole moiety. J Organomet Chem 696:4112–4120CrossRef
35.
Zurück zum Zitat Zhan H, Lamare S, Ng A, Kenny T, Guernon H, Chan WK, Djurišić AB, Harvey PD, Wong WY (2011) Synthesis and photovoltaic properties of new metalloporphyrin-containing polyplatinyne polymers. Macromolecules 44:5155–5167CrossRef Zhan H, Lamare S, Ng A, Kenny T, Guernon H, Chan WK, Djurišić AB, Harvey PD, Wong WY (2011) Synthesis and photovoltaic properties of new metalloporphyrin-containing polyplatinyne polymers. Macromolecules 44:5155–5167CrossRef
36.
Zurück zum Zitat Wang Q, Wong WY (2011) New low-bandgap polymetallaynes of platinum functionalized with a triphenylamine-benzothiadiazole donor-acceptor unit for solar cell applications. Polym Chem 2:432–440CrossRef Wang Q, Wong WY (2011) New low-bandgap polymetallaynes of platinum functionalized with a triphenylamine-benzothiadiazole donor-acceptor unit for solar cell applications. Polym Chem 2:432–440CrossRef
37.
Zurück zum Zitat Cyr PW, Klem EJD, Sargent EH, Manners I (2005) Photoconductivity in donor-acceptor polyferrocenylsilane-fullerene composite films. Chem Mater 17:5770–5773CrossRef Cyr PW, Klem EJD, Sargent EH, Manners I (2005) Photoconductivity in donor-acceptor polyferrocenylsilane-fullerene composite films. Chem Mater 17:5770–5773CrossRef
38.
Zurück zum Zitat Padhy H, Sahu D, Chiang IH, Patra D, Kekuda D, Chu CW, Lin HC (2011) Synthesis and applications of main-chain Ru(II) metallo-polymers containing bis-terpyridyl ligands with various benzodiazole cores for solar cells. J Mater Chem 21:1196–1205CrossRef Padhy H, Sahu D, Chiang IH, Patra D, Kekuda D, Chu CW, Lin HC (2011) Synthesis and applications of main-chain Ru(II) metallo-polymers containing bis-terpyridyl ligands with various benzodiazole cores for solar cells. J Mater Chem 21:1196–1205CrossRef
39.
Zurück zum Zitat Feng K, Shen X, Li Y, He Y, Huang D, Peng Q (2013) Ruthenium(II) containing supramolecular polymers with cyclopentadithiophene-benzothiazole conjugated bridges for photovoltaic applications. Polym Chem 4:5701–5710CrossRef Feng K, Shen X, Li Y, He Y, Huang D, Peng Q (2013) Ruthenium(II) containing supramolecular polymers with cyclopentadithiophene-benzothiazole conjugated bridges for photovoltaic applications. Polym Chem 4:5701–5710CrossRef
40.
Zurück zum Zitat Liao CY, Chen CP, Chang CC, Hwang GW, Chou HH, Cheng CH (2013) Synthesis of conjugated polymers bearing indacenodithiophene and cyclometalated platinum(II) units and their application in organic photovoltaics. Sol Energy Mater Sol Cells 109:111–119CrossRef Liao CY, Chen CP, Chang CC, Hwang GW, Chou HH, Cheng CH (2013) Synthesis of conjugated polymers bearing indacenodithiophene and cyclometalated platinum(II) units and their application in organic photovoltaics. Sol Energy Mater Sol Cells 109:111–119CrossRef
41.
Zurück zum Zitat Mak CSK, Cheung WK, Leung QY, Chan WK (2010) Conjugated copolymers containing low bandgap rhenium(I) complexes. Macromol Rapid Commun 31:875–882CrossRef Mak CSK, Cheung WK, Leung QY, Chan WK (2010) Conjugated copolymers containing low bandgap rhenium(I) complexes. Macromol Rapid Commun 31:875–882CrossRef
42.
Zurück zum Zitat Kimoto A, Tajima Y (2012) Donor-acceptor-type low bandgap polymer carrying phenylazomethine moiety as a metal-collecting pendant unit: open-circuit voltage modulation of solution-processed organic photovoltaic devices induced by metal complexation. ACS Macro Lett 1:667–671CrossRef Kimoto A, Tajima Y (2012) Donor-acceptor-type low bandgap polymer carrying phenylazomethine moiety as a metal-collecting pendant unit: open-circuit voltage modulation of solution-processed organic photovoltaic devices induced by metal complexation. ACS Macro Lett 1:667–671CrossRef
43.
Zurück zum Zitat Guo F, Ogawa K, Kim YG, Danilov EO, Castellano FN, Reynolds JR, Schanze KS (2007) A fulleropyrrolidine end-capped platinum-acetylide triad: the mechanism of photoinduced charge transfer in organometallic photovoltaic cells. Phys Chem Chem Phys 9:2724–2734CrossRef Guo F, Ogawa K, Kim YG, Danilov EO, Castellano FN, Reynolds JR, Schanze KS (2007) A fulleropyrrolidine end-capped platinum-acetylide triad: the mechanism of photoinduced charge transfer in organometallic photovoltaic cells. Phys Chem Chem Phys 9:2724–2734CrossRef
44.
Zurück zum Zitat Liu S, Zhang K, Lu J, Zhang J, Yip HL, Huang F, Cao Y (2013) High-efficiency polymer solar cells via the incorporation of an amino-functionalized conjugated metallopolymer as a cathode interlayer. J Am Chem Soc 135:15326–15329CrossRef Liu S, Zhang K, Lu J, Zhang J, Yip HL, Huang F, Cao Y (2013) High-efficiency polymer solar cells via the incorporation of an amino-functionalized conjugated metallopolymer as a cathode interlayer. J Am Chem Soc 135:15326–15329CrossRef
45.
Zurück zum Zitat Rodríguez JG, Lafuente A, Martín-Villamil R, Martínez-Alcazar MP (2001) Synthesis and structural analysis of 1,4-bis[n-(N,N-dimethylamino)pheny]buta-1,3-diynes and charge-transfer complexes with TCNE. J Phys Org Chem 14:859–868CrossRef Rodríguez JG, Lafuente A, Martín-Villamil R, Martínez-Alcazar MP (2001) Synthesis and structural analysis of 1,4-bis[n-(N,N-dimethylamino)pheny]buta-1,3-diynes and charge-transfer complexes with TCNE. J Phys Org Chem 14:859–868CrossRef
46.
Zurück zum Zitat Michinobu T, May JS, Lim JH, Boudon C, Gisselbrecht JP, Seiler P, Gross M, Biaggio I, Diederich F (2005) A new class of organic donor-acceptor molecules with large third-order optical nonlinearities. Chem Commun 41:737–739 Michinobu T, May JS, Lim JH, Boudon C, Gisselbrecht JP, Seiler P, Gross M, Biaggio I, Diederich F (2005) A new class of organic donor-acceptor molecules with large third-order optical nonlinearities. Chem Commun 41:737–739
47.
Zurück zum Zitat Kivala M, Diederich F (2009) Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores. Acc Chem Res 42:235–248CrossRef Kivala M, Diederich F (2009) Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores. Acc Chem Res 42:235–248CrossRef
48.
Zurück zum Zitat Kato SI, Diederich F (2010) Non-planar push-pull chromophores. Chem Commun 46:1994–2006CrossRef Kato SI, Diederich F (2010) Non-planar push-pull chromophores. Chem Commun 46:1994–2006CrossRef
49.
Zurück zum Zitat Michinobu T (2011) Adapting semiconducting polymer doping techniques to create new types of click postfunctionalization. Chem Soc Rev 40:2306–2316CrossRef Michinobu T (2011) Adapting semiconducting polymer doping techniques to create new types of click postfunctionalization. Chem Soc Rev 40:2306–2316CrossRef
50.
Zurück zum Zitat Michinobu T, Li Y, Hyakutake T (2013) Polymeric ion sensors with multiple detection modes achieved by a new type of click chemistry reaction. Phys Chem Chem Phys 15:2623–2631CrossRef Michinobu T, Li Y, Hyakutake T (2013) Polymeric ion sensors with multiple detection modes achieved by a new type of click chemistry reaction. Phys Chem Chem Phys 15:2623–2631CrossRef
51.
Zurück zum Zitat Kato SI, Kivala M, Schweizer WB, Boudon C, Gisselbrecht JP, Diederich F (2009) Origin of intense intramolecular charge-transfer interactions in nonplanar push-pull chromophores. Chem Eur J 15:8687–8691CrossRef Kato SI, Kivala M, Schweizer WB, Boudon C, Gisselbrecht JP, Diederich F (2009) Origin of intense intramolecular charge-transfer interactions in nonplanar push-pull chromophores. Chem Eur J 15:8687–8691CrossRef
52.
Zurück zum Zitat Kivala M, Boudon C, Gisselbrecht JP, Seiler P, Gross M, Diederich F (2007) Charge-transfer chromophores by cycloaddition-retroelectrocyclization: multivalent systems and cascade reactions. Angew Chem Int Ed 46:6357–6360CrossRef Kivala M, Boudon C, Gisselbrecht JP, Seiler P, Gross M, Diederich F (2007) Charge-transfer chromophores by cycloaddition-retroelectrocyclization: multivalent systems and cascade reactions. Angew Chem Int Ed 46:6357–6360CrossRef
53.
Zurück zum Zitat Silvestri F, Jordan M, Howes K, Kivala M, Rivera-Fuentes P, Boudon C, Gisselbrecht JP, Schweizer WB, Seiler P, Chiu M, Diederich F (2011) Regular acyclic and macrocyclic [AB] oligomers by formation of push-pull chromophores in the chain-growth step. Chem Eur J 17:6088–6097CrossRef Silvestri F, Jordan M, Howes K, Kivala M, Rivera-Fuentes P, Boudon C, Gisselbrecht JP, Schweizer WB, Seiler P, Chiu M, Diederich F (2011) Regular acyclic and macrocyclic [AB] oligomers by formation of push-pull chromophores in the chain-growth step. Chem Eur J 17:6088–6097CrossRef
54.
Zurück zum Zitat Kivala M, Boudon C, Gisselbrecht JP, Enko B, Seiler P, Müller IB, Langer N, Jarowski PD, Gescheidt G, Diederich F (2009) Organic super-acceptors with efficient intramolecular charge-transfer interactions by [2 + 2] cycloadditions of TCNE, TCNQ, and F4-TCNQ to donor-substituted cyanoalkynes. Chem Eur J 15:4111–4123CrossRef Kivala M, Boudon C, Gisselbrecht JP, Enko B, Seiler P, Müller IB, Langer N, Jarowski PD, Gescheidt G, Diederich F (2009) Organic super-acceptors with efficient intramolecular charge-transfer interactions by [2 + 2] cycloadditions of TCNE, TCNQ, and F4-TCNQ to donor-substituted cyanoalkynes. Chem Eur J 15:4111–4123CrossRef
55.
Zurück zum Zitat Leliège A, Blanchard P, Rousseau T, Roncali J (2011) Triphenylamine/tetracyanobutadiene-based D-A-D π-conjugated systems as molecular donors for organic solar cells. Org Lett 13:3098–3101CrossRef Leliège A, Blanchard P, Rousseau T, Roncali J (2011) Triphenylamine/tetracyanobutadiene-based D-A-D π-conjugated systems as molecular donors for organic solar cells. Org Lett 13:3098–3101CrossRef
56.
Zurück zum Zitat Ohshita J, Kajihara T, Tanaka D, Ooyama Y (2014) Preparation of poly(disilanylenetetracyanobutadienyleneoligothienylene)s as new donor-acceptor type organosilicon polymers. J Organomet Chem 749:255–260CrossRef Ohshita J, Kajihara T, Tanaka D, Ooyama Y (2014) Preparation of poly(disilanylenetetracyanobutadienyleneoligothienylene)s as new donor-acceptor type organosilicon polymers. J Organomet Chem 749:255–260CrossRef
57.
Zurück zum Zitat Michinobu T, Satoh N, Cai J, Li Y, Han L (2014) Novel design of organic donor-acceptor dyes without carboxylic acid anchoring groups for dye-sensitized solar cells. J Mater Chem C 2:3367–3372CrossRef Michinobu T, Satoh N, Cai J, Li Y, Han L (2014) Novel design of organic donor-acceptor dyes without carboxylic acid anchoring groups for dye-sensitized solar cells. J Mater Chem C 2:3367–3372CrossRef
58.
Zurück zum Zitat Bruce MI, Rodgers JR, Snow MR, Swincer AG (1981) Cyclopentadienyl-ruthenium and –osmium chemistry. cleavage of tetracyanoethylene under mild conditions: X-ray crystal structures of [Ru{η3-C(CN)2CPhC = C(CN)2}(PPh3)(η-C5H5)] and [Ru{C[=C(CN)2]CPh = C(CN)2}(CNBut)(PPh3)(η-C5H5)]. J Chem Soc Chem Commun 17:271–272 Bruce MI, Rodgers JR, Snow MR, Swincer AG (1981) Cyclopentadienyl-ruthenium and –osmium chemistry. cleavage of tetracyanoethylene under mild conditions: X-ray crystal structures of [Ru{η3-C(CN)2CPhC = C(CN)2}(PPh3)(η-C5H5)] and [Ru{C[=C(CN)2]CPh = C(CN)2}(CNBut)(PPh3)(η-C5H5)]. J Chem Soc Chem Commun 17:271–272
59.
Zurück zum Zitat Bruce MI (2013) Reactions of polycyano-alkenes with alkynyl- and poly-ynyl-Group 8 metal complexes. J Organomet Chem 730:3–19CrossRef Bruce MI (2013) Reactions of polycyano-alkenes with alkynyl- and poly-ynyl-Group 8 metal complexes. J Organomet Chem 730:3–19CrossRef
60.
Zurück zum Zitat Onitsuka K, Takahashi S (1995) Synthesis and structure of s-cis- and s-trans-μ-butadiene-2,3-diyldiplatinum complexes by the reaction of μ-ethynediyldiplatinum complexes with tetracyanoethylene. J Chem Soc Chem Commun 31:2095–2096 Onitsuka K, Takahashi S (1995) Synthesis and structure of s-cis- and s-trans-μ-butadiene-2,3-diyldiplatinum complexes by the reaction of μ-ethynediyldiplatinum complexes with tetracyanoethylene. J Chem Soc Chem Commun 31:2095–2096
61.
Zurück zum Zitat Onitsuka K, Ose N, Ozawa F, Takahashi S (1999) Reactions of acetylene-bridged diplatinum complexes with tetracyanoethylene. J Organomet Chem 578:169–177CrossRef Onitsuka K, Ose N, Ozawa F, Takahashi S (1999) Reactions of acetylene-bridged diplatinum complexes with tetracyanoethylene. J Organomet Chem 578:169–177CrossRef
62.
Zurück zum Zitat Tchitchanov BH, Chiu M, Jordan M, Kivala M, Schweizer WB, Diederich F (2013) Platinum(II) acetylides in the formal [2+2] cycloaddition-retroelectrocyclization reaction: organodonor versus metal activation. Eur J Org Chem 2013:3729–3740 Tchitchanov BH, Chiu M, Jordan M, Kivala M, Schweizer WB, Diederich F (2013) Platinum(II) acetylides in the formal [2+2] cycloaddition-retroelectrocyclization reaction: organodonor versus metal activation. Eur J Org Chem 2013:3729–3740
63.
Zurück zum Zitat Sonogashira K, Morimoto H, Takai Y, Takahashi S (1981) Reactions of metal poly-yne polymers with free phosphines, coordinated phosphines, carbon monoxide, and tetracyanoethylene. Symp Organomet Chem Jpn 28:64–66 Sonogashira K, Morimoto H, Takai Y, Takahashi S (1981) Reactions of metal poly-yne polymers with free phosphines, coordinated phosphines, carbon monoxide, and tetracyanoethylene. Symp Organomet Chem Jpn 28:64–66
64.
Zurück zum Zitat Yuan Y, Michinobu T (2012) Construction of donor-acceptor chromophores in platinum polyyne polymer by [2 + 2] cycloaddition of organic acceptors. Macromol Chem Phys 213:2114–2119CrossRef Yuan Y, Michinobu T (2012) Construction of donor-acceptor chromophores in platinum polyyne polymer by [2 + 2] cycloaddition of organic acceptors. Macromol Chem Phys 213:2114–2119CrossRef
65.
Zurück zum Zitat Yuan Y, Michinobu T, Oguma J, Kato T, Miyake K (2013) Attempted inversion of semiconducting features of platinum polyyne polymers: a new approach for all-polymer solar cells. Macromol Chem Phys 214:1465–1472CrossRef Yuan Y, Michinobu T, Oguma J, Kato T, Miyake K (2013) Attempted inversion of semiconducting features of platinum polyyne polymers: a new approach for all-polymer solar cells. Macromol Chem Phys 214:1465–1472CrossRef
66.
Zurück zum Zitat Michinobu T (2008) Click-type reaction of aromatic polyamines for improvement of thermal and optoelectronic properties. J Am Chem Soc 130:14074–14075CrossRef Michinobu T (2008) Click-type reaction of aromatic polyamines for improvement of thermal and optoelectronic properties. J Am Chem Soc 130:14074–14075CrossRef
67.
Zurück zum Zitat Michinobu T, Seo C, Noguchi K, Mori T (2012) Effects of click postfunctionalization on thermal stability and field effect transistor performances of aromatic polyamines. Polym Chem 3:1427–1435CrossRef Michinobu T, Seo C, Noguchi K, Mori T (2012) Effects of click postfunctionalization on thermal stability and field effect transistor performances of aromatic polyamines. Polym Chem 3:1427–1435CrossRef
Metadaten
Titel
All-Polymer Solar Cells Based on Organometallic Polymers
verfasst von
Tsuyoshi Michinobu
Copyright-Jahr
2015
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46054-2_5