Skip to main content

2016 | OriginalPaper | Buchkapitel

Alternative Topologies for GREEN-PSO

verfasst von : Stephen M. Majercik

Erschienen in: Computational Intelligence

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The expense of evaluating the function to be optimized can make it difficult to apply the Particle Swarm Optimization (PSO) algorithm in the real world. Approximating the function is one way to address this issue, but an alternative is conservation of function evaluations. GREEN-PSO (GR-PSO) adopts the latter approach: given a fixed number of function evaluations, GR-PSO conserves them by probabilistically choosing a subset of particles smaller than the entire swarm on each iteration and allowing only those particles to perform function evaluations. Since fewer function evaluations are used on each iteration, the algorithm can use more particles and/or more iterations for a given number of function evaluations. GR-PSO has been shown to be effective using the global topology, performing as well as, or better than, the standard PSO algorithm (S-PSO) [7]. We extend these results by showing that GR-PSO can achieve significantly better performance than S-PSO, in terms of both best function value achieved and rate of error reduction, using three other topologies—ring, von Neumann, and Moore—on a set of six standard benchmark functions, and that the von Neumann and Moore topologies can be more effective topologies for GR-PSO than the global topology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akat, S., Gazi, V.: Decentralized asynchronous particle swarm optimization. In: Swarm Intelligence Symposium, SIS 2008, IEEE, pp. 1–8 (2008a) Akat, S., Gazi, V.: Decentralized asynchronous particle swarm optimization. In: Swarm Intelligence Symposium, SIS 2008, IEEE, pp. 1–8 (2008a)
2.
Zurück zum Zitat Akat, S., Gazi, V., Particle swarm optimization with dynamic neighborhood topology: Three neighborhood strategies and preliminary results. In: Swarm Intelligence Symposium, SIS 2008, IEEE, pp. 1–8 (2008b) Akat, S., Gazi, V., Particle swarm optimization with dynamic neighborhood topology: Three neighborhood strategies and preliminary results. In: Swarm Intelligence Symposium, SIS 2008, IEEE, pp. 1–8 (2008b)
3.
Zurück zum Zitat Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Swarm Intelligence Symposium, SIS 2007, IEEE, pp. 120–127 (2007) Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Swarm Intelligence Symposium, SIS 2007, IEEE, pp. 120–127 (2007)
4.
Zurück zum Zitat García-Nieto, J., Alba, E.: Why six informants is optimal in PSO. In: Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference, GECCO ’12, pp. 25–32 (2012) García-Nieto, J., Alba, E.: Why six informants is optimal in PSO. In: Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference, GECCO ’12, pp. 25–32 (2012)
5.
Zurück zum Zitat Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE, pp. 1942–1948 (1995) Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE, pp. 1942–1948 (1995)
6.
Zurück zum Zitat Landa-Becerra, R., Santana-Quintero, L.V., Coello Coello, C.A.: Knowledge incorporation in multi-objective evolutionary algorithms. In: Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases, pp. 23–46 (2008)CrossRef Landa-Becerra, R., Santana-Quintero, L.V., Coello Coello, C.A.: Knowledge incorporation in multi-objective evolutionary algorithms. In: Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases, pp. 23–46 (2008)CrossRef
7.
Zurück zum Zitat Majercik, S.M.: GREEN-PSO: Conserving function evaluations in particle swarm optimization. In: Proceedings of the Fifth International Conference on Evolutionary Computation Theory and Applications, pp. 160–167 (2013) Majercik, S.M.: GREEN-PSO: Conserving function evaluations in particle swarm optimization. In: Proceedings of the Fifth International Conference on Evolutionary Computation Theory and Applications, pp. 160–167 (2013)
8.
Zurück zum Zitat Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)CrossRef Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)CrossRef
9.
Zurück zum Zitat Monson, C.K., Seppi, K.D.: Exposing origin-seeking bias in PSO. In: GECCO, pp. 241–248 (2005) Monson, C.K., Seppi, K.D.: Exposing origin-seeking bias in PSO. In: GECCO, pp. 241–248 (2005)
10.
Zurück zum Zitat Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization: an overview. Swarm Intell. 1, 33–57 (2007)CrossRef Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization: an overview. Swarm Intell. 1, 33–57 (2007)CrossRef
11.
Zurück zum Zitat Reyes-Sierra, M., Coello Coello, C.A.: A study of techniques to improve the efficiency of a multi-objective particle swarm optimizer. In: Evolutionary Computation in Dynamic and Uncertain Environments, Studies in Computational Intelligence vol. 51, pp. 269–296 (2007) Reyes-Sierra, M., Coello Coello, C.A.: A study of techniques to improve the efficiency of a multi-objective particle swarm optimizer. In: Evolutionary Computation in Dynamic and Uncertain Environments, Studies in Computational Intelligence vol. 51, pp. 269–296 (2007)
12.
Zurück zum Zitat Sedighizadeh, D., Masehian, E.: Particle swarm optimization methods, taxonomy and applications. Int. J. Comput. Theory Eng. 1(5), 486–502 (2009)CrossRef Sedighizadeh, D., Masehian, E.: Particle swarm optimization methods, taxonomy and applications. Int. J. Comput. Theory Eng. 1(5), 486–502 (2009)CrossRef
Metadaten
Titel
Alternative Topologies for GREEN-PSO
verfasst von
Stephen M. Majercik
Copyright-Jahr
2016
Verlag
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-319-23392-5_9