Skip to main content

2019 | OriginalPaper | Buchkapitel

4. Aluminosilicate Inorganic Polymers (Geopolymers): Emerging Ion Exchangers for Removal of Metal Ions

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Geopolymers (GPs), also known as alkali-activated aluminosilicates or inorganic polymers, are synthesized from an aluminosilicate source (fly ash, metakaolin, or blast furnace slag) and very alkaline sodium hydroxide and/or silicate. Due to their high compressive strength, acid and fire resistance, GPs are used as construction and coating materials. However, since the structure of GP contains negatively charged Al(III) tetrahedra (balanced by alkali cations), they are feasible ion exchangers. The present chapter is aimed to encapsulate the developments in the field of using GPs for the removal of alkali metals (Li+, K+, Cs+), alkaline earth metals (Mg2+, Ca2+, Sr2+, and Ba2+), ammonium ion, and heavy metals (Pb2+, Cu2+, Cd2+, Zn2+, Ni2+, Cr3+) from water. GPs are the first cementing materials that have remarkable ion exchange capacity. GPs have higher ion exchange/adsorption capacity, but a lower rate of adsorption than their precursors (fly ash, metakaolin,…). Thus, geopolymerization increases the adsorption sites on one hand but imposes kinetics limitations that render GPs slow adsorption. GPs resemble zeolites in respect of cation exchange capacity, high surface area, and thermal stability. However, the synthesis of GPs is easier and inexpensive with lower energy and water demand than zeolite synthesis. The prepared GP could be directly formulated as high compressive strength granules at a low temperature. Since GPs are more acid resistant, they are accessible for regeneration than zeolites, but this issue requires further work.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Davidovits J (1991) Geopolymers: inorganic polymeric new materials. J Therm Anal 37:1633–1656CrossRef Davidovits J (1991) Geopolymers: inorganic polymeric new materials. J Therm Anal 37:1633–1656CrossRef
2.
Zurück zum Zitat Provis JL, Fernández-Jiménez A, Kamseu E, Leonelli C, Palom A (2014) Binder chemistry—low-calcium alkali-activated materials. In: Provis JL, van Devente JSJ (eds) Alkali activated materials: state-of-the-art report, RILEM TC 224-AAM, Springer, pp 93–123 Provis JL, Fernández-Jiménez A, Kamseu E, Leonelli C, Palom A (2014) Binder chemistry—low-calcium alkali-activated materials. In: Provis JL, van Devente JSJ (eds) Alkali activated materials: state-of-the-art report, RILEM TC 224-AAM, Springer, pp 93–123
4.
8.
Zurück zum Zitat Duxson P, Fernandez-Jimenez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933CrossRef Duxson P, Fernandez-Jimenez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933CrossRef
9.
Zurück zum Zitat Vance ER, Perera DS (2009) Geopolymers for nuclear waste immobilization. In: Provis JL, Van Deventer JSJ (eds) Geopolymers: structure, processing, properties and industrial applications. CRC Press and Woodhead Publishing Limited, Oxford, pp 401–420CrossRef Vance ER, Perera DS (2009) Geopolymers for nuclear waste immobilization. In: Provis JL, Van Deventer JSJ (eds) Geopolymers: structure, processing, properties and industrial applications. CRC Press and Woodhead Publishing Limited, Oxford, pp 401–420CrossRef
21.
Zurück zum Zitat Yuan J, He P, Jia D, You J, Liu X, Zhang Y, Cai D, Yang Z, Duan X, Wang S, Zhou Y (2017) Effects of Na + substitution Cs + on the microstructure and thermal expansion behavior of ceramic derived from geopolymer. J Am Ceram Soc 100:4412–4424. https://doi.org/10.1111/jace.14968CrossRef Yuan J, He P, Jia D, You J, Liu X, Zhang Y, Cai D, Yang Z, Duan X, Wang S, Zhou Y (2017) Effects of Na + substitution Cs + on the microstructure and thermal expansion behavior of ceramic derived from geopolymer. J Am Ceram Soc 100:4412–4424. https://​doi.​org/​10.​1111/​jace.​14968CrossRef
54.
Zurück zum Zitat Schmidt W (2012) Synthetic inorganic ion exchange materials. In: Inamuddin, Luqman M (eds) Ion exchange technology I. Theory and materials. Springer, pp 277–298 Schmidt W (2012) Synthetic inorganic ion exchange materials. In: Inamuddin, Luqman M (eds) Ion exchange technology I. Theory and materials. Springer, pp 277–298
55.
Zurück zum Zitat Bajpai PK (1986) Synthesis of mordenite type zeolite. Zeolites 6:2–8CrossRef Bajpai PK (1986) Synthesis of mordenite type zeolite. Zeolites 6:2–8CrossRef
62.
Zurück zum Zitat Buic Z, Zelić B (2009) Application of clay for petrochemical wastewater pretreatment. Water Qual Res J Can 44:399–406CrossRef Buic Z, Zelić B (2009) Application of clay for petrochemical wastewater pretreatment. Water Qual Res J Can 44:399–406CrossRef
63.
Zurück zum Zitat Nasef MM, Ujang Z (2012) Introduction to ion exchange processes. In: Inamuddin, Luqman M (eds) Ion exchange technology I. Theory and materials. Springer, pp 1–40 Nasef MM, Ujang Z (2012) Introduction to ion exchange processes. In: Inamuddin, Luqman M (eds) Ion exchange technology I. Theory and materials. Springer, pp 1–40
69.
Zurück zum Zitat Abora K, Beleña I, Bernal SA, Dunster A, Nixon PA, Provis JL, Tagnit-Hamou A, Winnefeld F (2014) Durability and testing—chemical matrix degradation processes. In: Provis JL, van Devente JSJ (eds) Alkali activated materials: state-of-the-art report, RILEM TC 224-AAM. Springer, pp 177–221 Abora K, Beleña I, Bernal SA, Dunster A, Nixon PA, Provis JL, Tagnit-Hamou A, Winnefeld F (2014) Durability and testing—chemical matrix degradation processes. In: Provis JL, van Devente JSJ (eds) Alkali activated materials: state-of-the-art report, RILEM TC 224-AAM. Springer, pp 177–221
71.
Zurück zum Zitat Bernal SA, Krivenko PV, Provis JL, Puertas F, Rickard WDA, Shi C, Van Riessen A (2014) Other potential applications for alkali-activated materials. In: Provis JL, van Devente JSJ (eds) Alkali Activated materials: state-of-the-art report, RILEM TC 224-AAM. Springer, pp 339–379 Bernal SA, Krivenko PV, Provis JL, Puertas F, Rickard WDA, Shi C, Van Riessen A (2014) Other potential applications for alkali-activated materials. In: Provis JL, van Devente JSJ (eds) Alkali Activated materials: state-of-the-art report, RILEM TC 224-AAM. Springer, pp 339–379
Metadaten
Titel
Aluminosilicate Inorganic Polymers (Geopolymers): Emerging Ion Exchangers for Removal of Metal Ions
verfasst von
Bassam I. El-Eswed
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-10430-6_4