Skip to main content
Erschienen in: Journal of Materials Science 4/2017

24.10.2016 | Original Paper

Ambient-dried thermal superinsulating monolithic silica-based aerogels with short cellulosic fibers

verfasst von: Gediminas Markevicius, Rachid Ladj, Philipp Niemeyer, Tatiana Budtova, Arnaud Rigacci

Erschienen in: Journal of Materials Science | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Short (<2.5 mm) cellulose fiber–silica composite aerogels were synthesized by dispersing cellulose fibers in polyethoxydisiloxane-based sol. After in situ gelation, silica phase was hydrophobized with hexamethyldisilazane, and the composites were dried either at ambient pressure or with supercritical (sc) CO2. Fiber concentration was varied from 0 to 25 wt% (corresponding to 0–2.1 vol%) of the final dried composite. Preformed cellulosic fiber network preserved the monolithic shape of the silica-based composites during ambient drying. At room conditions, thermal conductivities were 0.015 ± 0.001 W/(m K) for sc-dried aerogels and 0.017 ± 0.001 W/(m K) for their ambient-dried counterparts. Materials dried with either method exhibited large specific surface areas, from 570 to 730 m2/g, and SEM analysis did not show significant differences in the global structure of the silica network. Composite aerogels were hydrophobic with water contact angles around 138°. Based on this proof of concept, the same approach was used with a variety of natural and recycled cellulosic fibers also resulting in silica-based monoliths with low thermal conductivities in the 0.016–0.023 W/(m K) range, all produced via ambient drying.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hrubesh LW (1998) Aerogel applications. J Non-Cryst Solids 225:335–342CrossRef Hrubesh LW (1998) Aerogel applications. J Non-Cryst Solids 225:335–342CrossRef
2.
Zurück zum Zitat Fricke J, Lu X, Wang P, Büttner D, Heinemann U (1992) Optimization of monolithic silica aerogel insulants. Int J Heat Mass Tran 35(9):2305–2309CrossRef Fricke J, Lu X, Wang P, Büttner D, Heinemann U (1992) Optimization of monolithic silica aerogel insulants. Int J Heat Mass Tran 35(9):2305–2309CrossRef
3.
Zurück zum Zitat Pierre AC, Rigacci A (2011) SiO2 aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York Pierre AC, Rigacci A (2011) SiO2 aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York
4.
Zurück zum Zitat Baetens R, Jelle BP, Gustavsen A (2001) Aerogel insulation for building applications: a state-of-the-art review. Energ Build 43:761–769CrossRef Baetens R, Jelle BP, Gustavsen A (2001) Aerogel insulation for building applications: a state-of-the-art review. Energ Build 43:761–769CrossRef
5.
Zurück zum Zitat Koebel M, Rigacci A, Achard P (2012) Aerogel-based thermal superinsulation: an overview. J Sol Gel Sci Technol 63:315–339CrossRef Koebel M, Rigacci A, Achard P (2012) Aerogel-based thermal superinsulation: an overview. J Sol Gel Sci Technol 63:315–339CrossRef
6.
Zurück zum Zitat Jelle BP (2011) Traditional, state-of-the-art and future thermal building insulation materials and solutions—properties, requirements and possibilities. Energ Build 43:2549–2563CrossRef Jelle BP (2011) Traditional, state-of-the-art and future thermal building insulation materials and solutions—properties, requirements and possibilities. Energ Build 43:2549–2563CrossRef
7.
Zurück zum Zitat Cuce E, Cuce PM, Wood CJ, Riffat SB (2014) Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew Sustain Energy Rev 34:273–299CrossRef Cuce E, Cuce PM, Wood CJ, Riffat SB (2014) Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew Sustain Energy Rev 34:273–299CrossRef
8.
Zurück zum Zitat Zeng SQ, Hunt AJ, Cao W, Greif R (1994) Pore size distribution and apparent gas thermal conductivity of silica aerogel. J Heat Trans-T ASME 116:756–759CrossRef Zeng SQ, Hunt AJ, Cao W, Greif R (1994) Pore size distribution and apparent gas thermal conductivity of silica aerogel. J Heat Trans-T ASME 116:756–759CrossRef
9.
Zurück zum Zitat Notario B, Pinto J, Solorzano E, de Saja JA, Dumon M, Rodriguez-Perez MA (2015) Experimental validation of the Knudsen effect in nanocellular polymeric foams. Polymer 56:57–67CrossRef Notario B, Pinto J, Solorzano E, de Saja JA, Dumon M, Rodriguez-Perez MA (2015) Experimental validation of the Knudsen effect in nanocellular polymeric foams. Polymer 56:57–67CrossRef
10.
Zurück zum Zitat Caps R, Fricke J (1985) Determination of the radiative heat transfer in transparent silica aerogel. Int J Sol Energ 3(1):13–18CrossRef Caps R, Fricke J (1985) Determination of the radiative heat transfer in transparent silica aerogel. Int J Sol Energ 3(1):13–18CrossRef
11.
Zurück zum Zitat Bisson A, Rigacci A, Lecomte D, Rodier E, Achard P (2003) Drying of silica gels to obtain aerogels: phenomenology and basic techniques. Dry Technol 21(4):593–628CrossRef Bisson A, Rigacci A, Lecomte D, Rodier E, Achard P (2003) Drying of silica gels to obtain aerogels: phenomenology and basic techniques. Dry Technol 21(4):593–628CrossRef
12.
Zurück zum Zitat Tewari PH, Hunt AJ, Lofftus KD (1985) Ambient-temperature supercritical drying of transparent silica aerogels. Matter Lett 3(9–10):363–367CrossRef Tewari PH, Hunt AJ, Lofftus KD (1985) Ambient-temperature supercritical drying of transparent silica aerogels. Matter Lett 3(9–10):363–367CrossRef
13.
Zurück zum Zitat Smith DM, Deshpande R, Brinke CJ (1992) Preparation of low-density aerogels at ambient pressure. MRS Symp Proc 271:567–572CrossRef Smith DM, Deshpande R, Brinke CJ (1992) Preparation of low-density aerogels at ambient pressure. MRS Symp Proc 271:567–572CrossRef
14.
Zurück zum Zitat Schwertfeger F, Frank D, Schmidt M (1998) Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying. J Non Cryst Solids 225:24–29CrossRef Schwertfeger F, Frank D, Schmidt M (1998) Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying. J Non Cryst Solids 225:24–29CrossRef
15.
Zurück zum Zitat Wang LJ, Zhao SY, Yang M (2009) Structural characteristics and thermal conductivity of ambient pressure dried silica aerogels with one-step solvent exchange/surface modification. J Mater Chem Phys 113:485–490CrossRef Wang LJ, Zhao SY, Yang M (2009) Structural characteristics and thermal conductivity of ambient pressure dried silica aerogels with one-step solvent exchange/surface modification. J Mater Chem Phys 113:485–490CrossRef
16.
Zurück zum Zitat Mahadik DB, Rao AV, Kumar R, Ingale SV, Wagh PB, Gupta SC (2012) Reduction of processing time by mechanical shaking of ambient pressure dried TEOS based silica aerogel granules. J Porous Mater 19:87–94CrossRef Mahadik DB, Rao AV, Kumar R, Ingale SV, Wagh PB, Gupta SC (2012) Reduction of processing time by mechanical shaking of ambient pressure dried TEOS based silica aerogel granules. J Porous Mater 19:87–94CrossRef
17.
Zurück zum Zitat Fesmire JE (2006) Aerogel insulation systems for space launch applications. Cryogenics 46:111–117CrossRef Fesmire JE (2006) Aerogel insulation systems for space launch applications. Cryogenics 46:111–117CrossRef
18.
Zurück zum Zitat Bardy ER, Mollendorf JC, Pendergast DR (2007) Thermal conductivity and compressive strain of aerogel insulation blankets under applied hydrostatic pressure. J Heat Trans T ASME 129:232–235CrossRef Bardy ER, Mollendorf JC, Pendergast DR (2007) Thermal conductivity and compressive strain of aerogel insulation blankets under applied hydrostatic pressure. J Heat Trans T ASME 129:232–235CrossRef
19.
Zurück zum Zitat Hayase G, Kanamori K, Maeno A, Kaji H, Nakanishi K (2016) Dynamic spring-back behavior in evaporative drying of polymethylsilsesquioxane monolithic gels for low-density transparent thermal superinsulators. J Non Cryst Solids 434:115–119CrossRef Hayase G, Kanamori K, Maeno A, Kaji H, Nakanishi K (2016) Dynamic spring-back behavior in evaporative drying of polymethylsilsesquioxane monolithic gels for low-density transparent thermal superinsulators. J Non Cryst Solids 434:115–119CrossRef
20.
Zurück zum Zitat Einarsrud MA (1998) Light gels by conventional drying. J Non Cryst Solids 225:1–7CrossRef Einarsrud MA (1998) Light gels by conventional drying. J Non Cryst Solids 225:1–7CrossRef
21.
Zurück zum Zitat Maleki H, Duraes L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non Cryst Solids 385:55–74CrossRef Maleki H, Duraes L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non Cryst Solids 385:55–74CrossRef
22.
Zurück zum Zitat Li L, Yalcin B, Nguyen BN, Meador MAB, Cakmak M (2009) Flexible nanofiber-reinforced aerogel (xerogel) synthesis, manufacture, and characterization. ACS Appl Mater Interfaces 1(11):2491–2501CrossRef Li L, Yalcin B, Nguyen BN, Meador MAB, Cakmak M (2009) Flexible nanofiber-reinforced aerogel (xerogel) synthesis, manufacture, and characterization. ACS Appl Mater Interfaces 1(11):2491–2501CrossRef
23.
Zurück zum Zitat Li X, Wang Q, Li H, Ji H, Sun X, He J (2013) Effect of sepiolite fiber on the structure and properties of the sepiolite/silica aerogel composite. J Sol Gel Sci Technol 67:646–653CrossRef Li X, Wang Q, Li H, Ji H, Sun X, He J (2013) Effect of sepiolite fiber on the structure and properties of the sepiolite/silica aerogel composite. J Sol Gel Sci Technol 67:646–653CrossRef
24.
Zurück zum Zitat Hayase G, Kanamori K, Abe K, Yano H, Maeno A, Kaji H, Nakanishi K (2013) Polymethylsilsesquioxane-cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity. ACS Appl Mater Interfaces 6:9466–9471CrossRef Hayase G, Kanamori K, Abe K, Yano H, Maeno A, Kaji H, Nakanishi K (2013) Polymethylsilsesquioxane-cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity. ACS Appl Mater Interfaces 6:9466–9471CrossRef
25.
Zurück zum Zitat Zhao S, Zhang Z, Sèbe G, Wu R, Virtudazo RVR, Tingaut P, Koebel M (2015) Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: improved mechanical properties promoted by nanoscale chemical compatibilization. Adv Funct Mater 25(15):2326–2334CrossRef Zhao S, Zhang Z, Sèbe G, Wu R, Virtudazo RVR, Tingaut P, Koebel M (2015) Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: improved mechanical properties promoted by nanoscale chemical compatibilization. Adv Funct Mater 25(15):2326–2334CrossRef
26.
Zurück zum Zitat Fu J, Wang S, He C, Lu Z, Huang J, Chen Z (2016) Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold. Carbohyd Polym 147:89–96CrossRef Fu J, Wang S, He C, Lu Z, Huang J, Chen Z (2016) Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold. Carbohyd Polym 147:89–96CrossRef
27.
Zurück zum Zitat John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohyd Polym 71:343–364CrossRef John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohyd Polym 71:343–364CrossRef
28.
Zurück zum Zitat Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohyd Polym 86:1–18CrossRef Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohyd Polym 86:1–18CrossRef
29.
Zurück zum Zitat Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A 35:371–376CrossRef Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A 35:371–376CrossRef
30.
Zurück zum Zitat Wong JCW, Kaymak H, Tingaut P, Brunner S, Koebel MM (2015) Mechanical and thermal properties of nanofibrillated cellulose reinforced silica aerogel composites. Micropor Mesopor Mat 217:150–158CrossRef Wong JCW, Kaymak H, Tingaut P, Brunner S, Koebel MM (2015) Mechanical and thermal properties of nanofibrillated cellulose reinforced silica aerogel composites. Micropor Mesopor Mat 217:150–158CrossRef
31.
Zurück zum Zitat Sai H, Xing L, Xiang J, Cui L, Jiao J, Zhao C, Li Z, Li F (2013) Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by non-supercritical drying process. J Mater Chem A 1:7963–7970CrossRef Sai H, Xing L, Xiang J, Cui L, Jiao J, Zhao C, Li Z, Li F (2013) Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by non-supercritical drying process. J Mater Chem A 1:7963–7970CrossRef
32.
Zurück zum Zitat Zhao S, Malfait WJ, Demilecamps A, Zhang Y, Brunner S, Huber L, Tingaut P, Rigacci A, Budtova T, Koebel MM (2015) Strong, thermally superinsulating biopolymer–silica aerogel hybrids by cogelation of silicic acid with pectin. Angew Chem Int Ed 54:14282–14286CrossRef Zhao S, Malfait WJ, Demilecamps A, Zhang Y, Brunner S, Huber L, Tingaut P, Rigacci A, Budtova T, Koebel MM (2015) Strong, thermally superinsulating biopolymer–silica aerogel hybrids by cogelation of silicic acid with pectin. Angew Chem Int Ed 54:14282–14286CrossRef
33.
Zurück zum Zitat Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T (2015) Cellulose—silica aerogels. Carbohyd Polym 122:293–300CrossRef Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T (2015) Cellulose—silica aerogels. Carbohyd Polym 122:293–300CrossRef
34.
Zurück zum Zitat Netravali AN, Chabba S (2003) Composites get greener. Mater Today 6(4):22–29CrossRef Netravali AN, Chabba S (2003) Composites get greener. Mater Today 6(4):22–29CrossRef
35.
Zurück zum Zitat Masmoudi Y, Rigacci A, Ilbizian P, Cauneau F, Achard P (2006) Diffusion during the supercritical drying of silica gels. Dry Technol 24(9):1121–1125CrossRef Masmoudi Y, Rigacci A, Ilbizian P, Cauneau F, Achard P (2006) Diffusion during the supercritical drying of silica gels. Dry Technol 24(9):1121–1125CrossRef
36.
Zurück zum Zitat Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallée H, Budtova T (2014) Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel. Biomacromolecules 15(6):2188–2195CrossRef Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallée H, Budtova T (2014) Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel. Biomacromolecules 15(6):2188–2195CrossRef
37.
Zurück zum Zitat Yokogawa H, Yokoyama M (1995) Hydrophobic silica aerogels. J Non Cryst Solids 186:23–29CrossRef Yokogawa H, Yokoyama M (1995) Hydrophobic silica aerogels. J Non Cryst Solids 186:23–29CrossRef
38.
Zurück zum Zitat Diaz JA, Ye Z, Wu X, Moore AL, Moon RJ, Martini A, Boday DJ, Youngblood JP (2014) Thermal conductivity in nanostructured films: from single cellulose nanocrystals to bulk films. Biomacromolecules 15:4096–4101CrossRef Diaz JA, Ye Z, Wu X, Moore AL, Moon RJ, Martini A, Boday DJ, Youngblood JP (2014) Thermal conductivity in nanostructured films: from single cellulose nanocrystals to bulk films. Biomacromolecules 15:4096–4101CrossRef
39.
Zurück zum Zitat Gupta M, Yang J, Roy C (2003) Specific heat and thermal conductivity of softwood bark and softwood char particles. Fuel 82:919–927CrossRef Gupta M, Yang J, Roy C (2003) Specific heat and thermal conductivity of softwood bark and softwood char particles. Fuel 82:919–927CrossRef
40.
Zurück zum Zitat Sekino N (2016) Density dependence in the thermal conductivity of cellulose fiber mats and wood shavings mats: investigation of the apparent thermal conductivity of coarse pores. J Wood Sci 62:20–26CrossRef Sekino N (2016) Density dependence in the thermal conductivity of cellulose fiber mats and wood shavings mats: investigation of the apparent thermal conductivity of coarse pores. J Wood Sci 62:20–26CrossRef
41.
Zurück zum Zitat Brinker CJ, Scherer GW (1990) Sol–gel science. Academic Press, Cambridge Brinker CJ, Scherer GW (1990) Sol–gel science. Academic Press, Cambridge
42.
Zurück zum Zitat Li S, Lyons-Hart J, Banyasz J, Shafer K (2001) Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis. Fuel 80:1809–1817CrossRef Li S, Lyons-Hart J, Banyasz J, Shafer K (2001) Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis. Fuel 80:1809–1817CrossRef
43.
Zurück zum Zitat Lin Y-C, Cho J, Tompsett GA, Westmoreland PR, Huber GW (2009) Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C 113:20097–20107CrossRef Lin Y-C, Cho J, Tompsett GA, Westmoreland PR, Huber GW (2009) Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C 113:20097–20107CrossRef
44.
Zurück zum Zitat Rao AP, Rao AV, Pajonk GM, Shewale PM (2007) Effect of solvent exchanging process on the preparation of the hydrophobic silica aerogels by ambient pressure drying method using sodium silicate precursor. J Mater Sci 42:8418–8425. doi:10.1007/s10853-007-1788-2 CrossRef Rao AP, Rao AV, Pajonk GM, Shewale PM (2007) Effect of solvent exchanging process on the preparation of the hydrophobic silica aerogels by ambient pressure drying method using sodium silicate precursor. J Mater Sci 42:8418–8425. doi:10.​1007/​s10853-007-1788-2 CrossRef
Metadaten
Titel
Ambient-dried thermal superinsulating monolithic silica-based aerogels with short cellulosic fibers
verfasst von
Gediminas Markevicius
Rachid Ladj
Philipp Niemeyer
Tatiana Budtova
Arnaud Rigacci
Publikationsdatum
24.10.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0514-3

Weitere Artikel der Ausgabe 4/2017

Journal of Materials Science 4/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.