Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.01.2015 | Original Article | Ausgabe 1/2015

International Journal of Computer Assisted Radiology and Surgery 1/2015

Ameliorating slice gaps in multislice magnetic resonance images: an interpolation scheme

Zeitschrift:
International Journal of Computer Assisted Radiology and Surgery > Ausgabe 1/2015
Autoren:
Nasser H. Kashou, Mark A. Smith, Cynthia J. Roberts
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s11548-014-1002-3) contains supplementary material, which is available to authorized users.

Abstract

Purpose

 Standard two-dimension (2D) magnetic resonance imaging (MRI) clinical acquisition protocols utilize orthogonal plane images which contain slice gaps (SG). The purpose of this work is to introduce a novel interpolation method for these orthogonal plane MRI 2D datasets. Three goals can be achieved: (1) increasing the resolution based on a priori knowledge of scanning protocol, (2) ameliorating the loss of data as a result of SG and (3) reconstructing a three-dimension (3D) dataset from 2D images.

Methods

 MRI data was collected using a 3T GE scanner and simulated using Matlab. The procedure for validating the MRI data combination algorithm was performed using a Shepp–Logan and a Gaussian phantom in both 2D and 3D of varying matrix sizes (64–512), as well as on one MRI dataset of a human brain and on an American College of Radiology magnetic resonance accreditation phantom.

Results

 The squared error and mean squared error were computed in comparing this scheme to common interpolating functions employed in MR consoles and workstations. The mean structure similarity matrix was computed in 2D as a means of qualitative image assessment. Additionally, MRI scans were used for qualitative assessment of the method. This new scheme was consistently more accurate than upsampling each orientation separately and averaging the upsampled data.

Conclusion

 An efficient new interpolation approach to resolve SG was developed. This scheme effectively fills in the missing data points by using orthogonal plane images. To date, there have been few attempts to combine the information of three MRI plane orientations using brain images. This has specific applications for clinical MRI, functional MRI, diffusion-weighted imaging/diffusion tensor imaging and MR angiography where 2D slice acquisition are used. In these cases, the 2D data can be combined using our method in order to obtain 3D volume.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Zusatzmaterial
Supplementary material 1 (pdf 161 KB)
11548_2014_1002_MOESM1_ESM.pdf
Supplementary material 2 (pdf 139 KB)
11548_2014_1002_MOESM2_ESM.pdf
Supplementary material 3 (png 2660 KB)
11548_2014_1002_MOESM3_ESM.png
Supplementary material 4 (wmv 182 KB)
Supplementary material 5 (wmv 424 KB)
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2015

International Journal of Computer Assisted Radiology and Surgery 1/2015 Zur Ausgabe

Premium Partner

    Bildnachweise