Skip to main content

2021 | OriginalPaper | Buchkapitel

18. Ammonothermal Materials

verfasst von : Wolfgang Schnick, Niklas Cordes, Mathias Mallmann, Rainer Niewa, Elke Meissner

Erschienen in: Ammonothermal Synthesis and Crystal Growth of Nitrides

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Even more than fifty years after the first ammonothermal syntheses, the synthetic potential of this technique is still far from established. Even in the already commercialized crystal growth of GaN substrates, various technical obstacles remain, partly because of lack of materials for high pressure equipment sufficiently resistant against the aggressive medium and at the same time persistent at the process conditions, but clearly because of insufficient understanding of the chemical and physical processes in supercritical ammonia. Still, many novel nitrides already emerge from ammonothermal synthesis. This technique has already proven to hold great prospects in crystal growth of the other group III nitrides, AlN and InN, relevant from a technical point of view, and substitution variant among those nitrides with further trivalent ions. Huge potential was also demonstrated for synthesis of further hard to produce nitrides as nitridosilicates, nitridophosphates and similar compounds, or oxide nitride perovskites. With increasing understanding of the physiochemical background and concomitant extension of the accessible process parameters we definitely will see great advances in the ammonothermal synthesis of novel materials for future applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T.M.M. Richter, R. Niewa, Chemistry of ammonothermal synthesis. Inorganics 2, 29 (2014) T.M.M. Richter, R. Niewa, Chemistry of ammonothermal synthesis. Inorganics 2, 29 (2014)
2.
Zurück zum Zitat Y. Hinuma, T. Hatakeyama, Y. Kumagai, L.A. Burton, H. Sato, Y. Muraba, S. Iimura, H. Hiramatsu, I. Tanaka, H. Hosono, F. Oba, Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis. Nat. Commun. 7, 11962 (2016)CrossRef Y. Hinuma, T. Hatakeyama, Y. Kumagai, L.A. Burton, H. Sato, Y. Muraba, S. Iimura, H. Hiramatsu, I. Tanaka, H. Hosono, F. Oba, Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis. Nat. Commun. 7, 11962 (2016)CrossRef
3.
Zurück zum Zitat J.S.J. Hargreaves, Heterogeneous catalysis with metal nitrides. Coord. Chem. Rev. 257, 2015 (2013)CrossRef J.S.J. Hargreaves, Heterogeneous catalysis with metal nitrides. Coord. Chem. Rev. 257, 2015 (2013)CrossRef
4.
Zurück zum Zitat M.A. Moram, S. Zhang, ScGaN and ScAlN: emerging nitride materials. J. Mater. Chem. A 2, 6042 (2014)CrossRef M.A. Moram, S. Zhang, ScGaN and ScAlN: emerging nitride materials. J. Mater. Chem. A 2, 6042 (2014)CrossRef
5.
Zurück zum Zitat A. Dittmar, J. Wollweber, M. Schmidbauer, D. Klimm, C. Hartmann, M. Bickermann, Physical vapor transport growth of bulk Al1–xScxN single crystals. J. Cryst. Growth 500, 74 (2018)CrossRef A. Dittmar, J. Wollweber, M. Schmidbauer, D. Klimm, C. Hartmann, M. Bickermann, Physical vapor transport growth of bulk Al1–xScxN single crystals. J. Cryst. Growth 500, 74 (2018)CrossRef
6.
Zurück zum Zitat J. Häusler, W. Schnick, Ammonothermal synthesis of nitrides: recent developments and future perspectives. Chem. Eur. J. 24, 11864 (2018)CrossRef J. Häusler, W. Schnick, Ammonothermal synthesis of nitrides: recent developments and future perspectives. Chem. Eur. J. 24, 11864 (2018)CrossRef
7.
Zurück zum Zitat J. Häusler, S. Schimmel, P. Wellmann, W. Schnick, Ammonothermal synthesis of earth-abundant nitride semiconductors ZnSiN2 and ZnGeN2 and dissolution monitoring by in situ X-ray imaging. Chem. Eur. J. 23, 12275 (2017)CrossRef J. Häusler, S. Schimmel, P. Wellmann, W. Schnick, Ammonothermal synthesis of earth-abundant nitride semiconductors ZnSiN2 and ZnGeN2 and dissolution monitoring by in situ X-ray imaging. Chem. Eur. J. 23, 12275 (2017)CrossRef
8.
Zurück zum Zitat J. Häusler, R. Niklaus, J. Minár, W. Schnick, Ammonothermal synthesis and optical properties of ternary nitride semiconductors Mg-IV-N2, Mn-IV-N2 and Li-IV2-N3 (IV=Si, Ge). Chem. Eur. J. 24, 1686 (2018)CrossRef J. Häusler, R. Niklaus, J. Minár, W. Schnick, Ammonothermal synthesis and optical properties of ternary nitride semiconductors Mg-IV-N2, Mn-IV-N2 and Li-IV2-N3 (IV=Si, Ge). Chem. Eur. J. 24, 1686 (2018)CrossRef
9.
Zurück zum Zitat U. Zachwieja, H. Jacobs, Ammonothermalsynthese von Kupfernitrid, Cu3N. J. Less-Common Met. 161, 175 (1990)CrossRef U. Zachwieja, H. Jacobs, Ammonothermalsynthese von Kupfernitrid, Cu3N. J. Less-Common Met. 161, 175 (1990)CrossRef
10.
Zurück zum Zitat J. Hertrampf, P. Becker, M. Widenmeyer, A. Weidenkaff, E. Schlücker, R. Niewa, Ammonothermal crystal growth of indium nitride. Cryst. Growth Des. 18, 2365 (2018)CrossRef J. Hertrampf, P. Becker, M. Widenmeyer, A. Weidenkaff, E. Schlücker, R. Niewa, Ammonothermal crystal growth of indium nitride. Cryst. Growth Des. 18, 2365 (2018)CrossRef
11.
Zurück zum Zitat J. Häusler, Ammonothermal synthesis of ternary nitride semiconductors and novel multinary nitrides. Dissertation, LMU München, Germany (2018) J. Häusler, Ammonothermal synthesis of ternary nitride semiconductors and novel multinary nitrides. Dissertation, LMU München, Germany (2018)
12.
Zurück zum Zitat F. Karau, W. Schnick, High-pressure synthesis and X-ray powder structure determination of the nitridophosphate BaP2N4. J. Solid State Chem. 178, 135 (2005)CrossRef F. Karau, W. Schnick, High-pressure synthesis and X-ray powder structure determination of the nitridophosphate BaP2N4. J. Solid State Chem. 178, 135 (2005)CrossRef
13.
Zurück zum Zitat F.W. Karau, L. Seyfarth, O. Oeckler, J. Senker, K. Landskron, W. Schnick, The stuffed framework structure of SrP2N4: challenges to synthesis and crystal structure determination. Chem. Eur. J. 13, 6841 (2007)CrossRef F.W. Karau, L. Seyfarth, O. Oeckler, J. Senker, K. Landskron, W. Schnick, The stuffed framework structure of SrP2N4: challenges to synthesis and crystal structure determination. Chem. Eur. J. 13, 6841 (2007)CrossRef
14.
Zurück zum Zitat H. Jacobs, R. Nymwegen, Synthesis and crystal structure of a potassium nitridophosphate, K3P6N11. Z. Anorg. Allg. Chem. 623, 429 (1997)CrossRef H. Jacobs, R. Nymwegen, Synthesis and crystal structure of a potassium nitridophosphate, K3P6N11. Z. Anorg. Allg. Chem. 623, 429 (1997)CrossRef
15.
Zurück zum Zitat M. Mallmann, C. Maak, R. Niklaus, W. Schnick, Ammonothermal synthesis, optical properties and DFT calculations of Mg2PN3 and Zn2PN3. Chem. Eur. J. 24, 13963 (2018)CrossRef M. Mallmann, C. Maak, R. Niklaus, W. Schnick, Ammonothermal synthesis, optical properties and DFT calculations of Mg2PN3 and Zn2PN3. Chem. Eur. J. 24, 13963 (2018)CrossRef
16.
Zurück zum Zitat L. Sagarna, K.Z. Rushchanskii, A. Maegli, S. Yoon, S. Populoh, A. Shkabko, S. Pokrant, M. Ležaić, R. Waser, A. Weidenkaff, Structure and thermoelectric properties of EuTi(O, N)(3 ± δ). J. Appl. Phys. 114, 033701 (2013)CrossRef L. Sagarna, K.Z. Rushchanskii, A. Maegli, S. Yoon, S. Populoh, A. Shkabko, S. Pokrant, M. Ležaić, R. Waser, A. Weidenkaff, Structure and thermoelectric properties of EuTi(O, N)(3 ± δ). J. Appl. Phys. 114, 033701 (2013)CrossRef
17.
Zurück zum Zitat A.E. Maegli, S. Pokrant, T. Hisatomi, M. Trottmann, K. Domen, A. Weidenkaff, Enhancement of photocatalytic water oxidation by the morphological control of LaTiO2N and cobalt oxide catalysts. J. Phys. Chem. C 118, 16344 (2014)CrossRef A.E. Maegli, S. Pokrant, T. Hisatomi, M. Trottmann, K. Domen, A. Weidenkaff, Enhancement of photocatalytic water oxidation by the morphological control of LaTiO2N and cobalt oxide catalysts. J. Phys. Chem. C 118, 16344 (2014)CrossRef
18.
Zurück zum Zitat S.G. Ebbinghaus, H.-P. Abicht, R. Dronskowski, T. Müller, A. Reller, A. Weidenkaff, Perovskite-related oxynitrides—recent developments in synthesis, characterisation and investigations of physical properties. Prog. Solid State Chem. 37, 173 (2009)CrossRef S.G. Ebbinghaus, H.-P. Abicht, R. Dronskowski, T. Müller, A. Reller, A. Weidenkaff, Perovskite-related oxynitrides—recent developments in synthesis, characterisation and investigations of physical properties. Prog. Solid State Chem. 37, 173 (2009)CrossRef
19.
Zurück zum Zitat N. Cordes, W. Schnick, Ammonothermal synthesis of crystalline oxonitride perovskites LnTaON2 (Ln=La, Ce, Pr, Nd, Sm, Gd). Chem. Eur. J. 23, 11410 (2017)CrossRef N. Cordes, W. Schnick, Ammonothermal synthesis of crystalline oxonitride perovskites LnTaON2 (Ln=La, Ce, Pr, Nd, Sm, Gd). Chem. Eur. J. 23, 11410 (2017)CrossRef
20.
Zurück zum Zitat W. Li, E. Ionescu, R. Riedel, A. Gurlo, Can we predict the formability of perovskite oxynitrides from tolerance and octahedral factors? J. Mater. Chem. 1, 12239 (2013)CrossRef W. Li, E. Ionescu, R. Riedel, A. Gurlo, Can we predict the formability of perovskite oxynitrides from tolerance and octahedral factors? J. Mater. Chem. 1, 12239 (2013)CrossRef
21.
Zurück zum Zitat A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009)CrossRef A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009)CrossRef
22.
Zurück zum Zitat T. Oshima, T. Ichibha, S.Q. Ken, K. Muraoka, J. J.M. Vequizo, K. Hibino, R. Kuriki, S. Yamashita, K. Hongo, T. Uchiyama, K. Fujii, D. Lu, R. Maezono, A. Yamakata, H. Kato, K. Kimoto, M. Yashima, Y. Uchimoto, M. Kakihana, O. Ishitani, H. Kageyama, K. Maeda, Undoped Layered Perovskite Oxynitride Li2LaTa2O6N for Photocatalytic CO2 Reduction with Visible Light. Angew. Chem. 30, 8286 (2018); Angew. Chem. Int. Ed. 57, 8154 (2018) T. Oshima, T. Ichibha, S.Q. Ken, K. Muraoka, J. J.M. Vequizo, K. Hibino, R. Kuriki, S. Yamashita, K. Hongo, T. Uchiyama, K. Fujii, D. Lu, R. Maezono, A. Yamakata, H. Kato, K. Kimoto, M. Yashima, Y. Uchimoto, M. Kakihana, O. Ishitani, H. Kageyama, K. Maeda, Undoped Layered Perovskite Oxynitride Li2LaTa2O6N for Photocatalytic CO2 Reduction with Visible Light. Angew. Chem. 30, 8286 (2018); Angew. Chem. Int. Ed. 57, 8154 (2018)
23.
Zurück zum Zitat R. Sarmiento-Pérez, T.F.T. Cerqueira, S. Körbel, S. Botti, M.A.L. Marques, Prediction of stable nitride perovskites. Chem. Mater. 27, 5957 (2015)CrossRef R. Sarmiento-Pérez, T.F.T. Cerqueira, S. Körbel, S. Botti, M.A.L. Marques, Prediction of stable nitride perovskites. Chem. Mater. 27, 5957 (2015)CrossRef
24.
Zurück zum Zitat S. Pimputkar, S. Nakamura, Decomposition of supercritical ammonia and modeling of supercritical ammonia–nitrogen–hydrogen solutions with applicability toward ammonothermal conditions. J. Supercrit. Fluids 107, 17 (2016)CrossRef S. Pimputkar, S. Nakamura, Decomposition of supercritical ammonia and modeling of supercritical ammonia–nitrogen–hydrogen solutions with applicability toward ammonothermal conditions. J. Supercrit. Fluids 107, 17 (2016)CrossRef
25.
Zurück zum Zitat R. Juza, H. Jacobs, Ammonothermalsynthese von Magnesium‐ und Berylliumamid. Angew. Chem. 78, 208 (1966); Ammonothermal synthesis of magnesium and beryllium amides. Angew. Chem. Int. Ed. 5, 247 (1966) R. Juza, H. Jacobs, Ammonothermalsynthese von Magnesium‐ und Berylliumamid. Angew. Chem. 78, 208 (1966); Ammonothermal synthesis of magnesium and beryllium amides. Angew. Chem. Int. Ed. 5, 247 (1966)
Metadaten
Titel
Ammonothermal Materials
verfasst von
Wolfgang Schnick
Niklas Cordes
Mathias Mallmann
Rainer Niewa
Elke Meissner
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-56305-9_18