Skip to main content
Erschienen in: Neural Computing and Applications 17/2020

09.06.2018 | S.I. : IWINAC 2015

AMSOM: artificial metaplasticity in SOM neural networks—application to MIT-BIH arrhythmias database

verfasst von: Santiago Torres-Alegre, Juan Fombellida, Juan Antonio Piñuela-Izquierdo, Diego Andina

Erschienen in: Neural Computing and Applications | Ausgabe 17/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Artificial metaplasticity is the machine learning algorithm inspired in the biological metaplasticity of neural synapses. Metaplasticity stands for plasticity of plasticity, and as long as plasticity is related to memory, metaplasticity is related to learning. Implemented in supervised learning assuming input patterns distribution or a related function, it has proved to be very efficient in performance and in training convergence for multidisciplinary applications. Now, for the first time, this kind of artificial metaplasticity is implemented in an unsupervised neural network, achieving also excellent results that are presented in this paper. To compare results, a modified self-organization map is applied to the classification of MIT-BIH cardiac arrhythmias database.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abraham WC (1996) Activity-dependent regulation of synaptic plasticity (metaplasticity) in the hippocampus. In: The hippocampus: functions and clinical relevance. Elsevier, Amsterdam, pp 15–26 Abraham WC (1996) Activity-dependent regulation of synaptic plasticity (metaplasticity) in the hippocampus. In: The hippocampus: functions and clinical relevance. Elsevier, Amsterdam, pp 15–26
2.
Zurück zum Zitat Jedlicka P (2002) Synaptic plasticity, metaplasticity and BCM theory. Bratisl Med J 103(4):137–143 Jedlicka P (2002) Synaptic plasticity, metaplasticity and BCM theory. Bratisl Med J 103(4):137–143
4.
Zurück zum Zitat Andina D, Alvarez-Vellisco A, Jevtic A, Fombellida J (2009) Artificial metaplasticity can improve artificial neural network learning. Intell Autom Soft Comput Spec Issue Signal Process Soft Comput 15(4):681–694 Andina D, Alvarez-Vellisco A, Jevtic A, Fombellida J (2009) Artificial metaplasticity can improve artificial neural network learning. Intell Autom Soft Comput Spec Issue Signal Process Soft Comput 15(4):681–694
5.
Zurück zum Zitat Kinto E, Del-Moral-Hernandez E, Marcano-Cedeño A, Ropero-Pelaez J (2007) A preliminary neural model for movement direction recognition based on biologically plausible plasticity rules. In: Proceeding IWINAC 2007, vol 45, no 28, pp 628–636 Kinto E, Del-Moral-Hernandez E, Marcano-Cedeño A, Ropero-Pelaez J (2007) A preliminary neural model for movement direction recognition based on biologically plausible plasticity rules. In: Proceeding IWINAC 2007, vol 45, no 28, pp 628–636
6.
Zurück zum Zitat Marcano-Cedeño A, Quintanilla-Dominguez J, Andina D (2011) Breast cancer classification applying artificial metaplasticity algorithm. Neurocomputing 74(8):1243–1250CrossRef Marcano-Cedeño A, Quintanilla-Dominguez J, Andina D (2011) Breast cancer classification applying artificial metaplasticity algorithm. Neurocomputing 74(8):1243–1250CrossRef
8.
Zurück zum Zitat Haykin S (1995) Neural networks a comprehensive foundation. MacMillan College Publishing Company, New YorkMATH Haykin S (1995) Neural networks a comprehensive foundation. MacMillan College Publishing Company, New YorkMATH
9.
Zurück zum Zitat Benchaib Y, Marcano-Cedeño A, Torres-Alegre S, Andina D (2013) Application of artificial metaplasticity neural networks to cardiac arrhythmias classification. Lect Notes Comput Sci 79(30):181–190CrossRef Benchaib Y, Marcano-Cedeño A, Torres-Alegre S, Andina D (2013) Application of artificial metaplasticity neural networks to cardiac arrhythmias classification. Lect Notes Comput Sci 79(30):181–190CrossRef
10.
Zurück zum Zitat Ruck DWH, Rogers SK, Kabrisky M, Oxley ME, Suter BW (1990) The multilayer perceptron as an approximation to a Bayes optimal discriminant function. IEEE Trans Neural Netw 1(4):296–298CrossRef Ruck DWH, Rogers SK, Kabrisky M, Oxley ME, Suter BW (1990) The multilayer perceptron as an approximation to a Bayes optimal discriminant function. IEEE Trans Neural Netw 1(4):296–298CrossRef
11.
Zurück zum Zitat Torres-Alegre S, Fombellida J, Piũela JA, Andina D (2015) Artificial metaplasticity: application to MIT-BIH arrhythmias database. Lect Notes Comput Sci 91(7):133–142CrossRef Torres-Alegre S, Fombellida J, Piũela JA, Andina D (2015) Artificial metaplasticity: application to MIT-BIH arrhythmias database. Lect Notes Comput Sci 91(7):133–142CrossRef
12.
14.
Zurück zum Zitat Moody GB, Mark RG (2001) The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag 20(3):45–50CrossRef Moody GB, Mark RG (2001) The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag 20(3):45–50CrossRef
15.
Zurück zum Zitat Minami K, Nakajima H, Toyoshima T (1999) Real-time discrimination of ventricular tachyarrhythmia with Fourier-transform neural network. IEEE Trans Biomed Eng 46(2):179–185CrossRef Minami K, Nakajima H, Toyoshima T (1999) Real-time discrimination of ventricular tachyarrhythmia with Fourier-transform neural network. IEEE Trans Biomed Eng 46(2):179–185CrossRef
16.
Zurück zum Zitat Owis MI, Youssef ABM, Kadah YM (2002) Characterization of ECG signals based on blind source separation. Med Biol Eng Comput 40(5):557–564CrossRef Owis MI, Youssef ABM, Kadah YM (2002) Characterization of ECG signals based on blind source separation. Med Biol Eng Comput 40(5):557–564CrossRef
17.
Zurück zum Zitat Yu SN, Chou KT (2008) Integration of independent component analysis and neural networks for ECG beat classification. Expert Syst Appl 34(4):2841–2846CrossRef Yu SN, Chou KT (2008) Integration of independent component analysis and neural networks for ECG beat classification. Expert Syst Appl 34(4):2841–2846CrossRef
18.
Zurück zum Zitat Benchaib Y, Chikh M (2009) A Specialized learning for neural classification of cardiac arrhythmias. J Theor Appl Inf Technol 6(1):81–89 Benchaib Y, Chikh M (2009) A Specialized learning for neural classification of cardiac arrhythmias. J Theor Appl Inf Technol 6(1):81–89
19.
Zurück zum Zitat Ghorbanian P, Jalali A, Ghaffari A, Nataraji A (2009) An improved procedure for detection of heart arrhythmias with novel pre-processing techniques. Expert Syst 29(5):478–491CrossRef Ghorbanian P, Jalali A, Ghaffari A, Nataraji A (2009) An improved procedure for detection of heart arrhythmias with novel pre-processing techniques. Expert Syst 29(5):478–491CrossRef
20.
Zurück zum Zitat Alonso-Atienza F, Morgado E, Fernandez-Martinez L, Garcia-Alberola A, Rojo-Alvarez J (2014) Detection of life-threatening arrhythmias using feature selection and support vector machines. IEEE Trans Biomed Eng 61(3):832–840CrossRef Alonso-Atienza F, Morgado E, Fernandez-Martinez L, Garcia-Alberola A, Rojo-Alvarez J (2014) Detection of life-threatening arrhythmias using feature selection and support vector machines. IEEE Trans Biomed Eng 61(3):832–840CrossRef
21.
Zurück zum Zitat Elhaj F, Salim N, Harris A, Swee T, Ahmed T (2016) Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput Methods Programs Biomed 127:5263CrossRef Elhaj F, Salim N, Harris A, Swee T, Ahmed T (2016) Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput Methods Programs Biomed 127:5263CrossRef
22.
Zurück zum Zitat Kiranyaz S, Ince T, Gabbouj M (2016) Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans Biomed Eng 63:664675CrossRef Kiranyaz S, Ince T, Gabbouj M (2016) Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans Biomed Eng 63:664675CrossRef
23.
Zurück zum Zitat Shanshan C, Wei H, Zhi L, Jian L, Xingjiao G (2017) Heartbeat classification using projected and dynamic features of ECG signal. Biomed Signal Process Control 31:165–173CrossRef Shanshan C, Wei H, Zhi L, Jian L, Xingjiao G (2017) Heartbeat classification using projected and dynamic features of ECG signal. Biomed Signal Process Control 31:165–173CrossRef
Metadaten
Titel
AMSOM: artificial metaplasticity in SOM neural networks—application to MIT-BIH arrhythmias database
verfasst von
Santiago Torres-Alegre
Juan Fombellida
Juan Antonio Piñuela-Izquierdo
Diego Andina
Publikationsdatum
09.06.2018
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 17/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3576-0

Weitere Artikel der Ausgabe 17/2020

Neural Computing and Applications 17/2020 Zur Ausgabe