Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

10.02.2020 | Original Article

An actor-critic reinforcement learning-based resource management in mobile edge computing systems

Zeitschrift:
International Journal of Machine Learning and Cybernetics
Autoren:
Fang Fu, Zhicai Zhang, Fei Richard Yu, Qiao Yan
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Reinforcement learning (RL) as an effective tool has attracted great attention in wireless communication field nowadays. In this paper, we investigate the offloading decision and resource allocation problem in mobile edge computing (MEC) systems based on RL methods. Different from existing literature, our research focuses on improving mobile operators’ revenue by maximizing the amount of the offloaded tasks while decreasing the energy expenditure and time-delays. Considering the dynamic characteristics of wireless environment, the above problem is modeled as a Markov decision process (MDP). Since the action space of the MDP is multidimensional continuous variables mixed with discrete variables, traditional RL algorithms are powerless. Therefore, an actor-critic (AC) with eligibility traces algorithm is proposed to resolve the problem. The actor part introduces the parameterized normal distribution to generate the probabilities of continuous stochastic actions, and the critic part employs a linear approximator to estimate the value of states, based on which the actor part updates policy parameters in the direction of performance improvement. Furthermore, an advantage function is designed to reduce the variance of the learning process. Simulation results indicate that the proposed algorithm can find the best strategy to maximize the amount of the tasks executed by the MEC server while decreasing the energy consumption and time-delays.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel