Skip to main content
Erschienen in: Wireless Personal Communications 3/2020

06.08.2020

An Adaptive Energy-Aware Relay Mechanism for IEEE 802.15.6 Wireless Body Area Networks

verfasst von: Yu Zhang, Bing Zhang, Shi Zhang

Erschienen in: Wireless Personal Communications | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless Body Area Networks(WBANs) is one of the most attractive communication technologies in recent years. Herein, network lifetime acts as a key factor in various WBANs applications. In this paper, an adaptive energy-aware relay mechanism is proposed to improve the network lifetime performance of WBANs based on the framework specified in IEEE 802.15.6 protocol. The proposed mechanism considers the energy-level of each node in the network to adaptively adjust the topology of the network in order to conserve the nodes which are lack of energy. The mechanism consists of two stages which are initialization phase and update phase. The update phase in the mechanism can be invoked by either enquiry method or report method to efficiently make relay selection for the network and reform the topology according to the varying network conditions. As a consequence, WBANs can make full use of residual energy in the network to improve the lifetime of WBANs. The simulation results show that the proposed mechanism can effectively prolong the network lifetime comparing with the original star topology strategy and other relay mechanisms proposed for WBANs. In addition, a scenario is designed where a sensor node in the network has the ability of moving to illustrate the capability of our mechanism to support mobility of sensor nodes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., & Leung, V. C. (2011). Body area networks: A survey. Journal Mobile Networks and Applications, 16, 171–193.CrossRef Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., & Leung, V. C. (2011). Body area networks: A survey. Journal Mobile Networks and Applications, 16, 171–193.CrossRef
2.
Zurück zum Zitat Cavallari, R., Martelli, F., Rosini, R., Buratti, C., & Verdone, R. (2014). A survey on wireless body area networks: Technologies and design challenges. IEEE Communications Surveys and Tutorials, 16(3), 1635–1657.CrossRef Cavallari, R., Martelli, F., Rosini, R., Buratti, C., & Verdone, R. (2014). A survey on wireless body area networks: Technologies and design challenges. IEEE Communications Surveys and Tutorials, 16(3), 1635–1657.CrossRef
3.
Zurück zum Zitat IEEE. (2012). IEEE standard for local and metropolitan area networks—Part 15.6: Wireless body area networks (pp. 1–271). IEEE. (2012). IEEE standard for local and metropolitan area networks—Part 15.6: Wireless body area networks (pp. 1–271).
4.
Zurück zum Zitat Di Franco, F., Tinnirello, I., & Ge, Y. (2014). 1 Hop or 2 Hops: Topology analysis in body area network. In Proceedings of IEEE EuCNC (pp. 1–5). Di Franco, F., Tinnirello, I., & Ge, Y. (2014). 1 Hop or 2 Hops: Topology analysis in body area network. In Proceedings of IEEE EuCNC (pp. 1–5).
5.
Zurück zum Zitat Naganawa, J., Wangchuk, K., Kim, M., Aoyagi, T., & Takada, J. (2015). Simulation-based scenario-specific channel modeling for WBAN cooperative transmission schemes. IEEE Journal of Biomedical and Health Informatics, 19(2), 559–570.CrossRef Naganawa, J., Wangchuk, K., Kim, M., Aoyagi, T., & Takada, J. (2015). Simulation-based scenario-specific channel modeling for WBAN cooperative transmission schemes. IEEE Journal of Biomedical and Health Informatics, 19(2), 559–570.CrossRef
6.
Zurück zum Zitat Abbasi, U. F., Awang, A., & Hamid, N. H. (2013). Performance investigation of opportunistic routing using log-normal and IEEE 802.15.6 CM 3A Path Loss Models in WBANs. In Proceedings of IEEE MICC (pp. 325–329). Abbasi, U. F., Awang, A., & Hamid, N. H. (2013). Performance investigation of opportunistic routing using log-normal and IEEE 802.15.6 CM 3A Path Loss Models in WBANs. In Proceedings of IEEE MICC (pp. 325–329).
7.
Zurück zum Zitat Smith, D. B., Miniutti, D., Lamahewa, T. A., & Hanlen, L. W. (2013). Propagation models for body-area networks: A survey and new outlook. IEEE Antennas and Propagation Magzine, 55(5), 97–117.CrossRef Smith, D. B., Miniutti, D., Lamahewa, T. A., & Hanlen, L. W. (2013). Propagation models for body-area networks: A survey and new outlook. IEEE Antennas and Propagation Magzine, 55(5), 97–117.CrossRef
8.
Zurück zum Zitat Zhang, Y., Zhang, B., & Zhang, S. (2017). A lifetime maximization relay selection scheme in wireless body area networks. Sensors, 17(6), 1267. 1-20.CrossRef Zhang, Y., Zhang, B., & Zhang, S. (2017). A lifetime maximization relay selection scheme in wireless body area networks. Sensors, 17(6), 1267. 1-20.CrossRef
9.
Zurück zum Zitat Youssef, M., Younis, M., & Arisha, K. A. (2002). A constrained shortest-path energy-aware routing algorithm for wireless sensor networks. In Proceedings of IEEE WCNC (pp. 794–799). Youssef, M., Younis, M., & Arisha, K. A. (2002). A constrained shortest-path energy-aware routing algorithm for wireless sensor networks. In Proceedings of IEEE WCNC (pp. 794–799).
10.
Zurück zum Zitat Haibo, Z., & Hong, S. (2009). Balancing energy consumption to maximize network lifetime in data gathering sensor networks. IEEE Transactions Parallel and Distributed Systems, 20(10), 1526–1539.CrossRef Haibo, Z., & Hong, S. (2009). Balancing energy consumption to maximize network lifetime in data gathering sensor networks. IEEE Transactions Parallel and Distributed Systems, 20(10), 1526–1539.CrossRef
11.
Zurück zum Zitat Yasaman, K., Rashid, A., & Ashfaq, K. (2013). Energy efficient decentralized detection based on bit-optimal multi-hop transmission in one-dimensional wireless sensor networks. In Proceedings of IEEE WD (pp. 1–8). Yasaman, K., Rashid, A., & Ashfaq, K. (2013). Energy efficient decentralized detection based on bit-optimal multi-hop transmission in one-dimensional wireless sensor networks. In Proceedings of IEEE WD (pp. 1–8).
12.
Zurück zum Zitat Khoa, T. P., Duy, H. N. N., & Tho, L. (2009) . Joint power allocation and relay selection in cooperative networks. In Proceedings of IEEE GLOBECOM (pp. 1–5). Khoa, T. P., Duy, H. N. N., & Tho, L. (2009) . Joint power allocation and relay selection in cooperative networks. In Proceedings of IEEE GLOBECOM (pp. 1–5).
13.
Zurück zum Zitat Lin, C.-S., & Chuang, P.-J. (2013). Energy-efficient two-hop extension protocol for wireless body area networks. IET Wireless Sensor Systems, 3(1), 37–56.CrossRef Lin, C.-S., & Chuang, P.-J. (2013). Energy-efficient two-hop extension protocol for wireless body area networks. IET Wireless Sensor Systems, 3(1), 37–56.CrossRef
14.
Zurück zum Zitat Pan, R., Chua, D., Pathmasuntharam, J. S., & Yong Ping, X. (2015). An opportunistic relay protocol with dynamic scheduling in wireless body area sensor network. IEEE Sensors Journal, 15(7), 3743–3750.CrossRef Pan, R., Chua, D., Pathmasuntharam, J. S., & Yong Ping, X. (2015). An opportunistic relay protocol with dynamic scheduling in wireless body area sensor network. IEEE Sensors Journal, 15(7), 3743–3750.CrossRef
15.
Zurück zum Zitat Chai, R., Wang, P., Huang, Z., & Su, C. (2014). Network lifetime maximization based joint resource optimization for wireless body area networks. In Proceedings of IEEE PIMRC (pp. 1088–1092). Chai, R., Wang, P., Huang, Z., & Su, C. (2014). Network lifetime maximization based joint resource optimization for wireless body area networks. In Proceedings of IEEE PIMRC (pp. 1088–1092).
16.
Zurück zum Zitat Elias, J. (2014). Optimal design of energy-efficient and cost-effective wireless body area networks. Ad Hoc Networks, 13(1), 560–574.CrossRef Elias, J. (2014). Optimal design of energy-efficient and cost-effective wireless body area networks. Ad Hoc Networks, 13(1), 560–574.CrossRef
17.
Zurück zum Zitat Aravind, M.T., & Jacob, L. (2018). Energy efficient and reliable communication in IEEE 802.15.6 IR-UWB WBAN. In Proceedings of the 2018 international conference on advances in computing, communications and informatics (ICACCI) (pp. 2352–2358). Aravind, M.T., & Jacob, L. (2018). Energy efficient and reliable communication in IEEE 802.15.6 IR-UWB WBAN. In Proceedings of the 2018 international conference on advances in computing, communications and informatics (ICACCI) (pp. 2352–2358).
18.
Zurück zum Zitat Ding, J., Eryk, D., Huang, X., & Fang, G. (2013). Energy-efficient cooperative relay selection for UWB based body area networks. In Proceedigs of the IEEE ICUWB (pp. 97–102). Ding, J., Eryk, D., Huang, X., & Fang, G. (2013). Energy-efficient cooperative relay selection for UWB based body area networks. In Proceedigs of the IEEE ICUWB (pp. 97–102).
19.
Zurück zum Zitat Moosavi, H., & Bui, F. M. (2016). Optimal relay selection and power control with quality-of-service provision in wireless body area networks. IEEE Transactions of Wireless Communication, 15(8), 5497–5510.CrossRef Moosavi, H., & Bui, F. M. (2016). Optimal relay selection and power control with quality-of-service provision in wireless body area networks. IEEE Transactions of Wireless Communication, 15(8), 5497–5510.CrossRef
20.
Zurück zum Zitat Liao, Y., Leeson, M. S., Cai, Q., Ai, Q., & Liu, Q. (2018). Mutual-information-based incremental relaying communications for wireless biomedical implant systems. Sensors, 18(2), 515.CrossRef Liao, Y., Leeson, M. S., Cai, Q., Ai, Q., & Liu, Q. (2018). Mutual-information-based incremental relaying communications for wireless biomedical implant systems. Sensors, 18(2), 515.CrossRef
21.
Zurück zum Zitat Choudhary, A., Nizamuddin, M., Zadoo, M., & Sachan, V. K. (2020). Multi-objective optimization framework complying IEEE 802.15.6 communication standards for wireless body area networks. Wireless Networks, 26, 4339–4362.CrossRef Choudhary, A., Nizamuddin, M., Zadoo, M., & Sachan, V. K. (2020). Multi-objective optimization framework complying IEEE 802.15.6 communication standards for wireless body area networks. Wireless Networks, 26, 4339–4362.CrossRef
22.
Zurück zum Zitat Huque, Md. T. I. ul., Munasinghe, K. S., & Jamalipour, A. (2014). A probabilistic energy-aware routing protocol for wireless body area networks. In Proceedings of the IEEE VTC-fall (pp. 1–5). Huque, Md. T. I. ul., Munasinghe, K. S., & Jamalipour, A. (2014). A probabilistic energy-aware routing protocol for wireless body area networks. In Proceedings of the IEEE VTC-fall (pp. 1–5).
23.
Zurück zum Zitat Tsouri, G. R., Prieto, A., & Argade, N. (2012). On increasing network lifetime in body area networks using global routing with energy consumption balancing. Sensors, 12(10), 13088–13108.CrossRef Tsouri, G. R., Prieto, A., & Argade, N. (2012). On increasing network lifetime in body area networks using global routing with energy consumption balancing. Sensors, 12(10), 13088–13108.CrossRef
24.
Zurück zum Zitat Gomathi, C., & Santhiyakumari, N. (2016). OFSR : An optimized fuzzy based swarm routing for wireless body area networks. In Proceedings of the SPIN (pp. 507–512). Gomathi, C., & Santhiyakumari, N. (2016). OFSR : An optimized fuzzy based swarm routing for wireless body area networks. In Proceedings of the SPIN (pp. 507–512).
25.
Zurück zum Zitat Kim, D. Y., Kim, Y., Cho, J., & Lee, B. (2010). EAR: An environment-adaptive routing algorithm for WBANs. In Proceedings of the IEEE ISMICT. Kim, D. Y., Kim, Y., Cho, J., & Lee, B. (2010). EAR: An environment-adaptive routing algorithm for WBANs. In Proceedings of the IEEE ISMICT.
26.
Zurück zum Zitat Huque, Md. T. I. ul., Munasinghe, K. S., Abolhasan, M., & Abbas, J. (2013). EAR-BAN: Energy efficient adaptive routing in wireless body area networks. In Proceedings of the ICSPCS (pp. 1–10). Huque, Md. T. I. ul., Munasinghe, K. S., Abolhasan, M., & Abbas, J. (2013). EAR-BAN: Energy efficient adaptive routing in wireless body area networks. In Proceedings of the ICSPCS (pp. 1–10).
27.
Zurück zum Zitat Zhang, R., Moungla, H., & Mehaoua, A. (2014). An energy-efficient leader election mechanism for wireless body area networks. In Proceedings of the IEEE GLOBECOM (pp. 2411–2416). Zhang, R., Moungla, H., & Mehaoua, A. (2014). An energy-efficient leader election mechanism for wireless body area networks. In Proceedings of the IEEE GLOBECOM (pp. 2411–2416).
28.
Zurück zum Zitat Sahndhu, M. M., Javaid, N., Imran, M., Guizani, M., Khan, Z. A., & Qasim, U. (2015). BEC: A novel routing protocol for balanced energy consumption in wireless body area networks. In Proceedings of the IEEE IWCMC (pp. 653–658). Sahndhu, M. M., Javaid, N., Imran, M., Guizani, M., Khan, Z. A., & Qasim, U. (2015). BEC: A novel routing protocol for balanced energy consumption in wireless body area networks. In Proceedings of the IEEE IWCMC (pp. 653–658).
29.
Zurück zum Zitat Welsh, M. (2004). Exposing resource tradeoffs in region-based communication abstractions for sensor networks. Computer Communication Review, 34(1), 119–124.CrossRef Welsh, M. (2004). Exposing resource tradeoffs in region-based communication abstractions for sensor networks. Computer Communication Review, 34(1), 119–124.CrossRef
30.
Zurück zum Zitat Reusens, E., Joseph, W., LatrE, B. I., Braem, B., Vermeeren, G. U., Tanghe, E., et al. (2009). Characterization of on-body communication channel and energy efficient topology design for wireless body area networks. IEEE Transactions of Information Technology in Biomedicine, 13(6), 933–945.CrossRef Reusens, E., Joseph, W., LatrE, B. I., Braem, B., Vermeeren, G. U., Tanghe, E., et al. (2009). Characterization of on-body communication channel and energy efficient topology design for wireless body area networks. IEEE Transactions of Information Technology in Biomedicine, 13(6), 933–945.CrossRef
31.
Zurück zum Zitat Braem, B., Latre, B., Moerman, I., Blondia, C., Reusens, E., Joseph, W., Martens, L., & Demeester, P. (2007). The need for cooperation and relaying in short-range high path loss sensor networks. In Proceedings of the IEEE SENSORCOMM (pp. 566–571). Braem, B., Latre, B., Moerman, I., Blondia, C., Reusens, E., Joseph, W., Martens, L., & Demeester, P. (2007). The need for cooperation and relaying in short-range high path loss sensor networks. In Proceedings of the IEEE SENSORCOMM (pp. 566–571).
32.
Zurück zum Zitat Elias, J., & Mehaoua, A. (2012). Energy-aware topology design for wireless body area networks. In Proceedings of the IEEE ICC (pp. 3409–3413). Elias, J., & Mehaoua, A. (2012). Energy-aware topology design for wireless body area networks. In Proceedings of the IEEE ICC (pp. 3409–3413).
Metadaten
Titel
An Adaptive Energy-Aware Relay Mechanism for IEEE 802.15.6 Wireless Body Area Networks
verfasst von
Yu Zhang
Bing Zhang
Shi Zhang
Publikationsdatum
06.08.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07686-4

Weitere Artikel der Ausgabe 3/2020

Wireless Personal Communications 3/2020 Zur Ausgabe

Neuer Inhalt