Skip to main content
Erschienen in: Journal of Scientific Computing 3/2018

15.03.2018

An Adaptive Staggered Discontinuous Galerkin Method for the Steady State Convection–Diffusion Equation

verfasst von: Jie Du, Eric Chung

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Staggered grid techniques have been applied successfully to many problems. A distinctive advantage is that physical laws arising from the corresponding partial differential equations are automatically preserved. Recently, a staggered discontinuous Galerkin (SDG) method was developed for the convection–diffusion equation. In this paper, we are interested in solving the steady state convection–diffusion equation with a small diffusion coefficient \(\epsilon \). It is known that the exact solution may have large gradient in some regions and thus a very fine mesh is needed. For convection dominated problems, that is, when \(\epsilon \) is small, exact solutions may contain sharp layers. In these cases, adaptive mesh refinement is crucial in order to reduce the computational cost. In this paper, a new SDG method is proposed and the proof of its stability is provided. In order to construct an adaptive mesh refinement strategy for this new SDG method, we derive an a-posteriori error estimator and prove its efficiency and reliability under a boundedness assumption on \(h/\epsilon \), where h is the mesh size. Moreover, we will present some numerical results with singularities and sharp layers to show the good performance of the proposed error estimator as well as the adaptive mesh refinement strategy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ahmed, N., Matthies, G.: Numerical study of SUPG and LPS methods combined with higher order variational time discretization schemes applied to time-dependent linear convection–diffusion-reaction equations. J. Sci. Comput. 67, 998–1018 (2015)MathSciNet Ahmed, N., Matthies, G.: Numerical study of SUPG and LPS methods combined with higher order variational time discretization schemes applied to time-dependent linear convection–diffusion-reaction equations. J. Sci. Comput. 67, 998–1018 (2015)MathSciNet
2.
Zurück zum Zitat Ahmed, N., Matthies, G., Tobiska, L., Xie, H.: Discontinuous Galerkin time stepping with local projection stabilization for transient convection–diffusion-reaction problems. Comput. Methods Appl. Mech. Eng. 200, 1747–1756 (2011)MathSciNetCrossRef Ahmed, N., Matthies, G., Tobiska, L., Xie, H.: Discontinuous Galerkin time stepping with local projection stabilization for transient convection–diffusion-reaction problems. Comput. Methods Appl. Mech. Eng. 200, 1747–1756 (2011)MathSciNetCrossRef
3.
Zurück zum Zitat Ayuso, B., Marini, L.D.: Discontinuous Galerkin methods for advection–diffusion-reaction problems. SIAM J. Numer. Anal. 47, 1391–1420 (2009)MathSciNetCrossRef Ayuso, B., Marini, L.D.: Discontinuous Galerkin methods for advection–diffusion-reaction problems. SIAM J. Numer. Anal. 47, 1391–1420 (2009)MathSciNetCrossRef
4.
Zurück zum Zitat Braack, M., Lube, G.: Finite elements with local projection stabilization for incompressible flow problems. J. Comput. Math. 27, 116–147 (2009)MathSciNetMATH Braack, M., Lube, G.: Finite elements with local projection stabilization for incompressible flow problems. J. Comput. Math. 27, 116–147 (2009)MathSciNetMATH
5.
Zurück zum Zitat Brezzi, F., Douglas Jr., J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)MathSciNetCrossRef Brezzi, F., Douglas Jr., J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)MathSciNetCrossRef
6.
Zurück zum Zitat Burman, E.: A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty. SIAM J. Numer. Anal. 43, 2012–2033 (2005)MathSciNetCrossRef Burman, E.: A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty. SIAM J. Numer. Anal. 43, 2012–2033 (2005)MathSciNetCrossRef
7.
Zurück zum Zitat Burman, E., Ern, A.: Continuous interior penalty hp-finite element methods for advection and advection–diffusion equations. Math. Comput. 76, 1119–1140 (2007)MathSciNetCrossRef Burman, E., Ern, A.: Continuous interior penalty hp-finite element methods for advection and advection–diffusion equations. Math. Comput. 76, 1119–1140 (2007)MathSciNetCrossRef
8.
Zurück zum Zitat Cangiani, A., Georgoulis, E.H., Metcalfe, S.: Adaptive discontinuous Galerkin methods for nonstationary convection-diffusion problems. IMA J. Numer. Anal. 34(4), 1578–1597 (2014)MathSciNetCrossRef Cangiani, A., Georgoulis, E.H., Metcalfe, S.: Adaptive discontinuous Galerkin methods for nonstationary convection-diffusion problems. IMA J. Numer. Anal. 34(4), 1578–1597 (2014)MathSciNetCrossRef
9.
Zurück zum Zitat Chen, H., Li, J., Qiu, W.: Robust a posteriori error estimates for HDG method for convection–diffusion equations. IMA J. Numer. Anal. 36, 437–462 (2016)MathSciNetMATH Chen, H., Li, J., Qiu, W.: Robust a posteriori error estimates for HDG method for convection–diffusion equations. IMA J. Numer. Anal. 36, 437–462 (2016)MathSciNetMATH
10.
Zurück zum Zitat Chen, H., Qiu, W., Shi, K.: A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations. Comput. Methods Appl. Mech. Eng. 333, 287–310 (2018)MathSciNetCrossRef Chen, H., Qiu, W., Shi, K.: A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations. Comput. Methods Appl. Mech. Eng. 333, 287–310 (2018)MathSciNetCrossRef
11.
Zurück zum Zitat Cheung, S.W., Chung, E., Kim, H.H., Qian, Y.: Staggered discontinuous Galerkin methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 302, 251–266 (2015)MathSciNetCrossRef Cheung, S.W., Chung, E., Kim, H.H., Qian, Y.: Staggered discontinuous Galerkin methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 302, 251–266 (2015)MathSciNetCrossRef
12.
Zurück zum Zitat Chung, E.T., Ciarlet Jr., P.: A staggered discontinuous Galerkin method for wave propagation in media with dielectrics and meta-materials. J. Comput. Appl. Math. 239, 189–207 (2013)MathSciNetCrossRef Chung, E.T., Ciarlet Jr., P.: A staggered discontinuous Galerkin method for wave propagation in media with dielectrics and meta-materials. J. Comput. Appl. Math. 239, 189–207 (2013)MathSciNetCrossRef
13.
Zurück zum Zitat Chung, E.T., Ciarlet Jr., P., Yu, T.F.: Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwell’s equations on Cartesian grids. J. Comput. Phys. 235, 14–31 (2013)MathSciNetCrossRef Chung, E.T., Ciarlet Jr., P., Yu, T.F.: Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwell’s equations on Cartesian grids. J. Comput. Phys. 235, 14–31 (2013)MathSciNetCrossRef
14.
Zurück zum Zitat Chung, E., Cockburn, B., Fu, G.: The staggered DG method is the limit of a hybridizable DG method. SIAM J. Numer. Anal. 52, 915–932 (2014)MathSciNetCrossRef Chung, E., Cockburn, B., Fu, G.: The staggered DG method is the limit of a hybridizable DG method. SIAM J. Numer. Anal. 52, 915–932 (2014)MathSciNetCrossRef
15.
Zurück zum Zitat Chung, E., Cockburn, B., Fu, G.: The staggered DG method is the limit of a hybridizable DG method. Part II: the Stokes flow. J. Sci. Comput. 66, 870–887 (2016)MathSciNetCrossRef Chung, E., Cockburn, B., Fu, G.: The staggered DG method is the limit of a hybridizable DG method. Part II: the Stokes flow. J. Sci. Comput. 66, 870–887 (2016)MathSciNetCrossRef
16.
Zurück zum Zitat Chung, E.T., Du, J., Yuen, M.C.: An adaptive SDG method for the Stokes system. J. Sci. Comput. 70, 766–792 (2017)MathSciNetCrossRef Chung, E.T., Du, J., Yuen, M.C.: An adaptive SDG method for the Stokes system. J. Sci. Comput. 70, 766–792 (2017)MathSciNetCrossRef
17.
Zurück zum Zitat Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for wave propagation. SIAM J. Numer. Anal. 44, 2131–2158 (2006)MathSciNetCrossRef Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for wave propagation. SIAM J. Numer. Anal. 44, 2131–2158 (2006)MathSciNetCrossRef
18.
Zurück zum Zitat Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions. SIAM J. Numer. Anal. 47, 3820–3848 (2009)MathSciNetCrossRef Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions. SIAM J. Numer. Anal. 47, 3820–3848 (2009)MathSciNetCrossRef
19.
Zurück zum Zitat Chung, E.T., Kim, H.H., Widlund, O.: Two-level overlapping Schwarz algorithms for a staggered discontinuous Galerkin method. SIAM J. Numer. Anal. 51, 47–67 (2013)MathSciNetCrossRef Chung, E.T., Kim, H.H., Widlund, O.: Two-level overlapping Schwarz algorithms for a staggered discontinuous Galerkin method. SIAM J. Numer. Anal. 51, 47–67 (2013)MathSciNetCrossRef
20.
Zurück zum Zitat Chung, E.T., Lee, C.S.: A staggered discontinuous Galerkin method for the convection–diffusion equation. J. Numer. Math. 20, 1–31 (2012)MathSciNetCrossRef Chung, E.T., Lee, C.S.: A staggered discontinuous Galerkin method for the convection–diffusion equation. J. Numer. Math. 20, 1–31 (2012)MathSciNetCrossRef
21.
Zurück zum Zitat Chung, E.T., Leung, W.T.: A sub-grid structure enhanced discontinuous Galerkin method for multiscale diffusion and convection–diffusion problems. Commun. Comput. Phys. 14, 370–392 (2013)MathSciNetCrossRef Chung, E.T., Leung, W.T.: A sub-grid structure enhanced discontinuous Galerkin method for multiscale diffusion and convection–diffusion problems. Commun. Comput. Phys. 14, 370–392 (2013)MathSciNetCrossRef
22.
Zurück zum Zitat Chung, E., Yuen, M.C., Zhong, L.: A-posteriori error analysis for a staggered discontinuous Galerkin discretization of the time-harmonic Maxwell’s equations. Appl. Math. Comput. 237, 613–631 (2014)MathSciNetMATH Chung, E., Yuen, M.C., Zhong, L.: A-posteriori error analysis for a staggered discontinuous Galerkin discretization of the time-harmonic Maxwell’s equations. Appl. Math. Comput. 237, 613–631 (2014)MathSciNetMATH
23.
Zurück zum Zitat Cockburn, B., Dong, B., Guzman, J., Restelli, M., Sacco, R.: A hybridizable discontinuous Galerkin method for steady-state convection–diffusion-reaction problems. SIAM J. Sci. Comput. 31, 3827–3846 (2009)MathSciNetCrossRef Cockburn, B., Dong, B., Guzman, J., Restelli, M., Sacco, R.: A hybridizable discontinuous Galerkin method for steady-state convection–diffusion-reaction problems. SIAM J. Sci. Comput. 31, 3827–3846 (2009)MathSciNetCrossRef
24.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)MathSciNetCrossRef Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)MathSciNetCrossRef
25.
Zurück zum Zitat Codina, R.: Finite element approximation of the convection-diffusion equation: subgrid-scale spaces, local instabilities and anisotropic space-time discretizations. Lecture Notes in Computational Science and Engineering, vol. 81, pp. 85–97 (2011) Codina, R.: Finite element approximation of the convection-diffusion equation: subgrid-scale spaces, local instabilities and anisotropic space-time discretizations. Lecture Notes in Computational Science and Engineering, vol. 81, pp. 85–97 (2011)
26.
Zurück zum Zitat Dörfler, W.: A convergent adaptive algorithm for Poissons equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)MathSciNetCrossRef Dörfler, W.: A convergent adaptive algorithm for Poissons equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)MathSciNetCrossRef
27.
Zurück zum Zitat Ern, A., Guermond, J.: Theory and Practice of Finite Elements. Applied mathematical sciences. Springer, New York (2004)CrossRef Ern, A., Guermond, J.: Theory and Practice of Finite Elements. Applied mathematical sciences. Springer, New York (2004)CrossRef
28.
Zurück zum Zitat Ern, A., Stephansen, A.F., Vohralik, M.: Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection–diffusion reaction problems. J. Comput. Appl. Math. 234, 114–130 (2010)MathSciNetCrossRef Ern, A., Stephansen, A.F., Vohralik, M.: Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection–diffusion reaction problems. J. Comput. Appl. Math. 234, 114–130 (2010)MathSciNetCrossRef
29.
Zurück zum Zitat Fu, G., Qiu, W., Zhang, W.: An analysis of HDG methods for convection dominated diffusion problems. ESAIM Math. Model. Numer. Anal. 49, 225–256 (2015)MathSciNetCrossRef Fu, G., Qiu, W., Zhang, W.: An analysis of HDG methods for convection dominated diffusion problems. ESAIM Math. Model. Numer. Anal. 49, 225–256 (2015)MathSciNetCrossRef
30.
Zurück zum Zitat Houston, P., Perugia, I., Schotzau, D.: An a posteriori error indicator for discontinuous Galerkin discretizations of H(curl)-elliptic partial differential equations. IMA J. Numer. Anal. 27, 122–150 (2007)MathSciNetCrossRef Houston, P., Perugia, I., Schotzau, D.: An a posteriori error indicator for discontinuous Galerkin discretizations of H(curl)-elliptic partial differential equations. IMA J. Numer. Anal. 27, 122–150 (2007)MathSciNetCrossRef
31.
Zurück zum Zitat Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41, 2374–2399 (2003)MathSciNetCrossRef Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41, 2374–2399 (2003)MathSciNetCrossRef
32.
Zurück zum Zitat Kim, H.H., Chung, E.T., Lee, C.S.: A staggered discontinuous Galerkin method for the Stokes system. SIAM J. Numer. Anal. 51, 3327–3350 (2013)MathSciNetCrossRef Kim, H.H., Chung, E.T., Lee, C.S.: A staggered discontinuous Galerkin method for the Stokes system. SIAM J. Numer. Anal. 51, 3327–3350 (2013)MathSciNetCrossRef
33.
Zurück zum Zitat Matthies, G., Skrzypacz, P., Tobiska, L.: Stabilization of local projection type applied to convection–diffusion problems with mixed boundary conditions. Electron. Trans. Numer. Anal. 32, 90–105 (2008)MathSciNetMATH Matthies, G., Skrzypacz, P., Tobiska, L.: Stabilization of local projection type applied to convection–diffusion problems with mixed boundary conditions. Electron. Trans. Numer. Anal. 32, 90–105 (2008)MathSciNetMATH
34.
Zurück zum Zitat Morin, P., Nochetto, R.H., Siebert, K.G.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38, 466–488 (2000)MathSciNetCrossRef Morin, P., Nochetto, R.H., Siebert, K.G.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38, 466–488 (2000)MathSciNetCrossRef
35.
Zurück zum Zitat Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44, 631–658 (2002)MathSciNetCrossRef Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44, 631–658 (2002)MathSciNetCrossRef
36.
Zurück zum Zitat Nguyen, N., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for linear convection–diffusion equations. J. Comput. Phys. 228, 3232–3254 (2009)MathSciNetCrossRef Nguyen, N., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for linear convection–diffusion equations. J. Comput. Phys. 228, 3232–3254 (2009)MathSciNetCrossRef
37.
38.
Zurück zum Zitat Rostand, V., Le Roux, D.Y.: Raviart–Thomas and Brezzi–Douglas–Marini finite-element approximations of the shallow-water equations. Int. J. Numer. Methods Fluids 57, 951–976 (2008)MathSciNetCrossRef Rostand, V., Le Roux, D.Y.: Raviart–Thomas and Brezzi–Douglas–Marini finite-element approximations of the shallow-water equations. Int. J. Numer. Methods Fluids 57, 951–976 (2008)MathSciNetCrossRef
39.
Zurück zum Zitat Süli, E., Schwab, C., Houston, P.: hp-DGFEM for partial differential equations with nonnegative characteristic form. In: Cockburn, B., Karniadakis, G. E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, vol. . Springer, Berlin, pp. 221–230 (2000) Süli, E., Schwab, C., Houston, P.: hp-DGFEM for partial differential equations with nonnegative characteristic form. In: Cockburn, B., Karniadakis, G. E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, vol. . Springer, Berlin, pp. 221–230 (2000)
40.
Zurück zum Zitat Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7, 245–269 (2007)MathSciNetCrossRef Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7, 245–269 (2007)MathSciNetCrossRef
41.
Zurück zum Zitat Verfürth, R.: A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50, 67–83 (1994)MathSciNetCrossRef Verfürth, R.: A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50, 67–83 (1994)MathSciNetCrossRef
42.
Zurück zum Zitat Vohralik, M.: A posteriori error estimates for lowest-order mixed finite element discretizations of converction–diffusion-reaction equations. SIAM J. Numer. Anal. 45, 1570–1599 (2007)MathSciNetCrossRef Vohralik, M.: A posteriori error estimates for lowest-order mixed finite element discretizations of converction–diffusion-reaction equations. SIAM J. Numer. Anal. 45, 1570–1599 (2007)MathSciNetCrossRef
Metadaten
Titel
An Adaptive Staggered Discontinuous Galerkin Method for the Steady State Convection–Diffusion Equation
verfasst von
Jie Du
Eric Chung
Publikationsdatum
15.03.2018
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2018
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0695-9

Weitere Artikel der Ausgabe 3/2018

Journal of Scientific Computing 3/2018 Zur Ausgabe