Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.06.2015 | Ausgabe 2/2015

Optimization and Engineering 2/2015

An adaptive-topology ensemble algorithm for engineering optimization problems

Zeitschrift:
Optimization and Engineering > Ausgabe 2/2015
Autor:
Yoel Tenne

Abstract

Modern engineering design optimization often relies on computer simulations to evaluate candidate designs, a scenario which formulates the problem of optimizing a computationally expensive black-box functions. In such problems, there will often exist candidate designs which cause the simulation to fail, and this can degrade the optimization effectiveness. To address this issue, this paper proposes a new optimization algorithm which incorporates classifiers into the optimization search. The classifiers predict which candidate design are expected to cause the simulation to fail, and their prediction is used to bias the search towards valid designs, namely, for which the simulation is expected to succeed. However, the effectiveness of this approach strongly depends on the type of metamodels and classifiers being used, but due to the high cost of evaluating the simulation-based objective function it may be impractical to identify by numerical experiments the most suitable types of each. Leveraging on these issues, the proposed algorithm offers two main contributions: (a) it uses ensembles of both metamodels and classifiers to benefit from a diversity of predictions of different metamodels and classifiers, and (b) to improve the search effectiveness, it continuously adapts the ensembles’ topology during the search. The performance of the proposed algorithm was evaluated using an engineering problem of airfoil shape optimization. Performance analysis of the proposed algorithm using an engineering problem of airfoil shape optimization shows that: (a) incorporating classifiers into the search was an effective approach to handle simulation failures (b) using ensembles of metamodels and classifiers, and updating their topology during the search, improved the search effectiveness in comparison to using a single metamodel and classifier, and (c) it is beneficial to update the topology of the metamodel ensemble in all problem types, and it is beneficial to update the classifier ensemble topology in problems where simulation failures are prevalent.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2015

Optimization and Engineering 2/2015 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise