Skip to main content
Erschienen in: Neural Processing Letters 5/2021

07.07.2021

An advanced Hybrid Algorithm for Engineering Design Optimization

verfasst von: Pooja Verma, Raghav Prasad Parouha

Erschienen in: Neural Processing Letters | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Among numerous meta-heuristic algorithms, Differential evolution (DE) and Particle Swarm Optimization (PSO) are found to be an efficient and powerful optimization algorithm. Similarly, it has been observed that their hybrid algorithms provide a reliable estimate to global optimum. Therefore, in this paper based on multi-swarm approach an advanced hybrid algorithm haDEPSO is suggested for engineering design optimization problems. Where, proposed advanced DE (aDE) and PSO (aPSO) are integrated with the suggested hybrid. In aDE, a novel mutation and crossover strategy along with the slightly changed selection scheme are introduced, to avoid premature convergence. And aPSO comprises of novel gradually varying parameters, to avoid stagnation. In haDEPSO, entire population (\(pop\)) is sorted according to the fitness function value and divided into two sub-populations \(pop_{{{ }1}}\) and \(pop_{{{ }2}}\). Since \(pop_{{{ }1}}\) and \(pop_{{{ }2}}\) contains best and rest half of the main population which implies global and local search capability respectively. In order to maintain local and global search capability, applying aDE (due to its good local search ability) and aPSO (because of its virtuous global search capability) on the respective sub-population. Evaluating both sub-population then better solution obtained in \(pop_{{{ }1}}\) and \(pop_{{{ }2}}\) are named as best and gbest separately. If best is less than gbest then \(pop_{{{ }2}}\) is merged with \(pop_{{{ }1}}\) thereafter merged population evaluated by aDE (as it mitigates the potential stagnation). Otherwise, \(pop_{{{ }1}}\) is merged with \(pop_{{{ }2}}\) afterward merged population evaluated by aPSO (as it established to guide better movements). The convergence characteristic of aDE and aPSO provides different approximation to the solution space, thus haDEPSO achieve better solutions. Performance of proposed hybrid haDEPSO and its integrating component aDE and aPSO have been verified on CEC 2006 constrained benchmark functions. Then they applied on five engineering design optimization problems. Results confirms the superiority of proposed approaches over many state-of-the-art algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Simpson AR, Dandy GC, Murphy LJ (1994) Genetic algorithms compared to other techniques for pipe optimization. J Water Resour Plan Manag 20:423–443 Simpson AR, Dandy GC, Murphy LJ (1994) Genetic algorithms compared to other techniques for pipe optimization. J Water Resour Plan Manag 20:423–443
2.
Zurück zum Zitat Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceeding of IEEE international conference on neural networks 1942–1948 Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceeding of IEEE international conference on neural networks 1942–1948
3.
Zurück zum Zitat Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony algorithm. J Global Optim 39(3):459–471MathSciNetMATH Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony algorithm. J Global Optim 39(3):459–471MathSciNetMATH
4.
Zurück zum Zitat Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61 Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61
5.
Zurück zum Zitat Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: Algorithm and applications. Futur Gener Comput Syst 97:849–872 Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: Algorithm and applications. Futur Gener Comput Syst 97:849–872
6.
Zurück zum Zitat Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359MathSciNetMATH Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359MathSciNetMATH
7.
Zurück zum Zitat Davis L (1991) Handbook of genetic algorithms Davis L (1991) Handbook of genetic algorithms
8.
Zurück zum Zitat Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) A gravitational search algorithm. Inf Sci 179(13):2232–2248MATH Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) A gravitational search algorithm. Inf Sci 179(13):2232–2248MATH
9.
Zurück zum Zitat Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2019) Equilibrium optimizer: a novel optimization algorithm. Knowl-Based Syst 191:1–34 Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2019) Equilibrium optimizer: a novel optimization algorithm. Knowl-Based Syst 191:1–34
10.
Zurück zum Zitat Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315 Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315
11.
Zurück zum Zitat Shabani A, Asgarian B, Gharebaghi SA, Salido MA, Giret A (2019) A new optimization algorithm based on search and rescue operations. Math Probl Eng 2019:1–23 Shabani A, Asgarian B, Gharebaghi SA, Salido MA, Giret A (2019) A new optimization algorithm based on search and rescue operations. Math Probl Eng 2019:1–23
12.
Zurück zum Zitat Qiu X, Xu JX, Xu Y, Tan KC (2018) A new differential evolution algorithm for minimax optimization in robust design. IEEE Trans Cybern 48(5):1355–1368 Qiu X, Xu JX, Xu Y, Tan KC (2018) A new differential evolution algorithm for minimax optimization in robust design. IEEE Trans Cybern 48(5):1355–1368
13.
Zurück zum Zitat Zhang H, Li X (2018) Enhanced differential evolution with modified parent selection technique for numerical optimization. Int J Comput Sci Eng 17(1):98 Zhang H, Li X (2018) Enhanced differential evolution with modified parent selection technique for numerical optimization. Int J Comput Sci Eng 17(1):98
14.
Zurück zum Zitat Huang H, Jiang L, Yu X, Xie D (2018) Hypercube-based crowding differential evolution with neighborhood mutation for multimodal optimization. Int J Swarm Intell Res 9(2):15–27 Huang H, Jiang L, Yu X, Xie D (2018) Hypercube-based crowding differential evolution with neighborhood mutation for multimodal optimization. Int J Swarm Intell Res 9(2):15–27
15.
Zurück zum Zitat Yang X, Li J, Peng X (2019) An improved differential evolution algorithm for learning high-fidelity quantum controls. Sci Bull 64(19):1402–1408 Yang X, Li J, Peng X (2019) An improved differential evolution algorithm for learning high-fidelity quantum controls. Sci Bull 64(19):1402–1408
16.
Zurück zum Zitat Liu ZG, Ji XH, Yang Y (2019) Hierarchical differential evolution algorithm combined with multi-cross operation. Expert Syst Appl 130:276–292 Liu ZG, Ji XH, Yang Y (2019) Hierarchical differential evolution algorithm combined with multi-cross operation. Expert Syst Appl 130:276–292
17.
Zurück zum Zitat Gui L, Xia X, Yu F, Wu H, Wu R, Wei B, He G (2019) A multi-role based differential evolution. Swarm Evol Comput 50:1–15 Gui L, Xia X, Yu F, Wu H, Wu R, Wei B, He G (2019) A multi-role based differential evolution. Swarm Evol Comput 50:1–15
18.
Zurück zum Zitat Li S, Gu Q, Gong W, Ning B (2020) An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models. Energy Convers Manag 205:1–16 Li S, Gu Q, Gong W, Ning B (2020) An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models. Energy Convers Manag 205:1–16
19.
Zurück zum Zitat Hu L, Hua W, Lei W, Xiantian Z (2020) A modified boltzmann annealing differential evolution algorithm for inversion of directional resistivity logging-while-drilling measurements. J Pet Sci Eng 180:1–10 Hu L, Hua W, Lei W, Xiantian Z (2020) A modified boltzmann annealing differential evolution algorithm for inversion of directional resistivity logging-while-drilling measurements. J Pet Sci Eng 180:1–10
20.
Zurück zum Zitat Ben GN (2020) An accelerated differential evolution algorithm with new operators for multi-damage detection in plate-like structures. Appl Math Model 80:366–383MATH Ben GN (2020) An accelerated differential evolution algorithm with new operators for multi-damage detection in plate-like structures. Appl Math Model 80:366–383MATH
21.
Zurück zum Zitat Espitia HE, Sofrony JI (2018) Statistical analysis for vortex particle swarm optimization. Appl Soft Comput 67:370–386 Espitia HE, Sofrony JI (2018) Statistical analysis for vortex particle swarm optimization. Appl Soft Comput 67:370–386
22.
Zurück zum Zitat Yu H, Tan Y, Zeng J, Sun C, Jin Y (2018) Surrogate-assisted hierarchical particle swarm optimization. Inf Sci 454–455:59–72MathSciNet Yu H, Tan Y, Zeng J, Sun C, Jin Y (2018) Surrogate-assisted hierarchical particle swarm optimization. Inf Sci 454–455:59–72MathSciNet
23.
Zurück zum Zitat Chen Y, Li L, Xiao J, Yang Y, Liang J, Li T (2018) Particle swarm optimizer with crossover operation. Eng Appl Artif Intell 70:59–169 Chen Y, Li L, Xiao J, Yang Y, Liang J, Li T (2018) Particle swarm optimizer with crossover operation. Eng Appl Artif Intell 70:59–169
24.
Zurück zum Zitat Isiet M, Gadala M (2019) Self-adapting control parameters in particle swarm optimization. Appl Soft Comput 83:1–24 Isiet M, Gadala M (2019) Self-adapting control parameters in particle swarm optimization. Appl Soft Comput 83:1–24
25.
Zurück zum Zitat Hosseini SA, Hajipour A, Tavakoli H (2019) Design and optimization of a CMOS power amplifier using innovative fractional-order particle swarm optimization. Appl Soft Comput 85:1–10 Hosseini SA, Hajipour A, Tavakoli H (2019) Design and optimization of a CMOS power amplifier using innovative fractional-order particle swarm optimization. Appl Soft Comput 85:1–10
26.
Zurück zum Zitat Khajeh A, Ghasemi MR, Arab HG (2019) Modified particle swarm optimization with novel population initialization. J Inf Optim Sci 40(6):1167–1179MathSciNet Khajeh A, Ghasemi MR, Arab HG (2019) Modified particle swarm optimization with novel population initialization. J Inf Optim Sci 40(6):1167–1179MathSciNet
27.
Zurück zum Zitat Ang KM, Lim WH, Isa NAM, Tiang SS, Wong CH (2020) A constrained multi-swarm particle swarm optimization without velocity for constrained optimization problems. Exp Syst Appl 140:1–23 Ang KM, Lim WH, Isa NAM, Tiang SS, Wong CH (2020) A constrained multi-swarm particle swarm optimization without velocity for constrained optimization problems. Exp Syst Appl 140:1–23
28.
Zurück zum Zitat Lanlan K, Ruey SC, Wenliang C, Yeh C (2020) Non-inertial opposition-based particle swarm optimization and its theoretical analysis for deep learning applications. Appl Soft Comput 88:1–10 Lanlan K, Ruey SC, Wenliang C, Yeh C (2020) Non-inertial opposition-based particle swarm optimization and its theoretical analysis for deep learning applications. Appl Soft Comput 88:1–10
29.
Zurück zum Zitat Xiong H, Qiu B, Liu J (2020) An improved multi-swarm particle swarm optimizer for optimizing the electric field distribution of multichannel transcranial magnetic stimulation. Artif Intell Med 104:1–14 Xiong H, Qiu B, Liu J (2020) An improved multi-swarm particle swarm optimizer for optimizing the electric field distribution of multichannel transcranial magnetic stimulation. Artif Intell Med 104:1–14
30.
Zurück zum Zitat Seyedmahmoudian M et al (2015) Simulation and hardware implementation of new maximum power point tracking technique for partially shaded PV system using hybrid DEPSO method. Trans Sust Energy 6(3):850–862 Seyedmahmoudian M et al (2015) Simulation and hardware implementation of new maximum power point tracking technique for partially shaded PV system using hybrid DEPSO method. Trans Sust Energy 6(3):850–862
31.
Zurück zum Zitat Parouha RP, Das KN (2015) An efficient hybrid technique for numerical optimization and applications. Comput Ind Eng 83:193–216 Parouha RP, Das KN (2015) An efficient hybrid technique for numerical optimization and applications. Comput Ind Eng 83:193–216
32.
Zurück zum Zitat Tang B, Zhu Z, Luo J (2016) Hybridizing particle swarm optimization and differential evolution for the mobile robot global path planning. Int J Adv Rob Syst 13(3):1–17 Tang B, Zhu Z, Luo J (2016) Hybridizing particle swarm optimization and differential evolution for the mobile robot global path planning. Int J Adv Rob Syst 13(3):1–17
33.
Zurück zum Zitat Parouha RP, Das KN (2016) A robust memory based hybrid differential evolution for continuous optimization problem. Knowl-Based Syst 103:118–131 Parouha RP, Das KN (2016) A robust memory based hybrid differential evolution for continuous optimization problem. Knowl-Based Syst 103:118–131
34.
Zurück zum Zitat Parouha RP, Das KN (2016) DPD: an intelligent parallel hybrid algorithm for economic load dispatch problems with various practical constraints. Exp Syst Appl 63:295–309 Parouha RP, Das KN (2016) DPD: an intelligent parallel hybrid algorithm for economic load dispatch problems with various practical constraints. Exp Syst Appl 63:295–309
35.
Zurück zum Zitat Famelis IT, Alexandridis A, Tsitouras C (2017) A highly accurate differential evolution–particle swarm optimization algorithm for the construction of initial value problem solvers. Eng Optim 50(8):1364–1379MathSciNet Famelis IT, Alexandridis A, Tsitouras C (2017) A highly accurate differential evolution–particle swarm optimization algorithm for the construction of initial value problem solvers. Eng Optim 50(8):1364–1379MathSciNet
36.
Zurück zum Zitat Mao B, Xie Z, Wang Y, Handroos H, Wu H (2018) A hybrid strategy of differential evolution and modified particle swarm optimization for numerical solution of a parallel manipulator. Math Prob Eng 2018:1–9 Mao B, Xie Z, Wang Y, Handroos H, Wu H (2018) A hybrid strategy of differential evolution and modified particle swarm optimization for numerical solution of a parallel manipulator. Math Prob Eng 2018:1–9
38.
Zurück zum Zitat Too J, Abdullah AR, Saad NM (2019) Hybrid binary particle swarm optimization differential evolution-based feature selection for EMG signals classification. Axioms 8(3):1–17 Too J, Abdullah AR, Saad NM (2019) Hybrid binary particle swarm optimization differential evolution-based feature selection for EMG signals classification. Axioms 8(3):1–17
39.
Zurück zum Zitat Dash J, Dam B, Swain R (2020) Design and implementation of sharp edge FIR filters using hybrid differential evolution particle swarm optimization. AEU-Int J Electron C 114:1–61 Dash J, Dam B, Swain R (2020) Design and implementation of sharp edge FIR filters using hybrid differential evolution particle swarm optimization. AEU-Int J Electron C 114:1–61
40.
Zurück zum Zitat Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82 Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82
41.
Zurück zum Zitat Liang JJ, Runarsson TP, Mezura-Montes E, Clerc M, Suganthan P, Coello C et al (2006) Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization. In Technical Report. Singapore: Nanyang Technological University Liang JJ, Runarsson TP, Mezura-Montes E, Clerc M, Suganthan P, Coello C et al (2006) Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization. In Technical Report. Singapore: Nanyang Technological University
42.
Zurück zum Zitat Deb K (1995) Optimization for engineering design: algorithms and examples. Prentice-Hall of India, New Delhi Deb K (1995) Optimization for engineering design: algorithms and examples. Prentice-Hall of India, New Delhi
43.
Zurück zum Zitat Mohamed AW (2017) A novel differential evolution algorithm for solving constrained engineering optimization problems. J Intell Manuf 29(3):659–692 Mohamed AW (2017) A novel differential evolution algorithm for solving constrained engineering optimization problems. J Intell Manuf 29(3):659–692
44.
Zurück zum Zitat Mohamed AW, Mohamed AK, Elfeky EZ, Saleh M (2019) Enhanced directed differential evolution algorithm for solving constrained engineering optimization problems. Int J Appl Metaheur Comput 10(1):1–28 Mohamed AW, Mohamed AK, Elfeky EZ, Saleh M (2019) Enhanced directed differential evolution algorithm for solving constrained engineering optimization problems. Int J Appl Metaheur Comput 10(1):1–28
46.
Zurück zum Zitat Liu H, Cai ZX, Wang Y (2010) hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput 10(2):629–640 Liu H, Cai ZX, Wang Y (2010) hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput 10(2):629–640
47.
Zurück zum Zitat Das KN, Parouha RP (2015) an ideal tri-population approach for unconstrained optimization and applications. Appl Math Comput 256:666–701MathSciNetMATH Das KN, Parouha RP (2015) an ideal tri-population approach for unconstrained optimization and applications. Appl Math Comput 256:666–701MathSciNetMATH
48.
Zurück zum Zitat Zar JH (1999) Biostatistical analysis. Prentice Hall, Englewood Cliffs Zar JH (1999) Biostatistical analysis. Prentice Hall, Englewood Cliffs
49.
Zurück zum Zitat Yang XS, Deb S (2009) Cuckoo Search via Lévy flights. In proceedings of World congress on nature & biologically inspired computing. Coimbatore, India 210–214 Yang XS, Deb S (2009) Cuckoo Search via Lévy flights. In proceedings of World congress on nature & biologically inspired computing. Coimbatore, India 210–214
50.
Zurück zum Zitat Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete and multi-objective problems. Neural Comput Appl 27(4):1053–1073MathSciNet Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete and multi-objective problems. Neural Comput Appl 27(4):1053–1073MathSciNet
51.
Zurück zum Zitat Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. SIMULATION 76(2):60–68 Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. SIMULATION 76(2):60–68
52.
Zurück zum Zitat Kaveh A, Talatahari S (2010) An improved ant colony optimization for constrained engineering design problems. Eng Comput 27:155–182MATH Kaveh A, Talatahari S (2010) An improved ant colony optimization for constrained engineering design problems. Eng Comput 27:155–182MATH
53.
Zurück zum Zitat Huang F, Wang L, He Q (2007) An effective co-evolutionary differential evolution for constrained optimization. Appl Math Comput 186:340–356MathSciNetMATH Huang F, Wang L, He Q (2007) An effective co-evolutionary differential evolution for constrained optimization. Appl Math Comput 186:340–356MathSciNetMATH
54.
Zurück zum Zitat Zhang Z, Ding S, Jia W (2019) A hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problems. Eng Appl Artif Intell 85:254–268 Zhang Z, Ding S, Jia W (2019) A hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problems. Eng Appl Artif Intell 85:254–268
55.
Zurück zum Zitat He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20:89–99 He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20:89–99
56.
Zurück zum Zitat He S, Prempain E, Wu QH (2004) An improved particle swarm optimizer for mechanical design optimization problems. Eng Optim 36:585–605MathSciNet He S, Prempain E, Wu QH (2004) An improved particle swarm optimizer for mechanical design optimization problems. Eng Optim 36:585–605MathSciNet
57.
Zurück zum Zitat Basset M, Wang G, Sangaiah AK, Rushdy E (2019) Krill herd algorithm based on cuckoo search for solving engineering optimization problems. Multimed Tools Appl 78:3861–3884 Basset M, Wang G, Sangaiah AK, Rushdy E (2019) Krill herd algorithm based on cuckoo search for solving engineering optimization problems. Multimed Tools Appl 78:3861–3884
58.
Zurück zum Zitat Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133 Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133
59.
Zurück zum Zitat Akhtar S, Tai K, Ray T (2002) A socio-behavioural simulation model for engineering design optimization. Eng Optim 34:341–354 Akhtar S, Tai K, Ray T (2002) A socio-behavioural simulation model for engineering design optimization. Eng Optim 34:341–354
60.
Zurück zum Zitat Hedar AR, Fukushima M (2006) Derivative-free filter simulated annealing method for constrained continuous global optimization. J Global Optim 35:521–549MathSciNetMATH Hedar AR, Fukushima M (2006) Derivative-free filter simulated annealing method for constrained continuous global optimization. J Global Optim 35:521–549MathSciNetMATH
61.
Zurück zum Zitat Dhiman G, Kumar V (2018) Emperor Penguin Optimizer: A Bio-Inspired Algorithm For Engineering Problems. Knowl-Based Syst 159:20–50 Dhiman G, Kumar V (2018) Emperor Penguin Optimizer: A Bio-Inspired Algorithm For Engineering Problems. Knowl-Based Syst 159:20–50
62.
Zurück zum Zitat Mirjalili S, Mirjalili SM, Hatamlou A (2015) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513 Mirjalili S, Mirjalili SM, Hatamlou A (2015) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513
63.
Zurück zum Zitat Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70 Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70
64.
Zurück zum Zitat Fakhouri HN, Hudaib A, Sleit A (2020) Hybrid particle swarm optimization with sine cosine algorithm and nelder-mead simplex for solving engineering design problems. Arab J Sci Eng 4:3091–3109 Fakhouri HN, Hudaib A, Sleit A (2020) Hybrid particle swarm optimization with sine cosine algorithm and nelder-mead simplex for solving engineering design problems. Arab J Sci Eng 4:3091–3109
65.
Zurück zum Zitat Baykasoglu A, Ozsoydan FB (2015) Adaptive firefly algorithm with chaos for mechanical design optimization problems. Appl Soft Comput 36:152–164 Baykasoglu A, Ozsoydan FB (2015) Adaptive firefly algorithm with chaos for mechanical design optimization problems. Appl Soft Comput 36:152–164
66.
Zurück zum Zitat Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm: a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166 Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm: a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166
67.
Zurück zum Zitat Montes EM, Coello C, Reyes J, Mun˜oz-Da´vila L (2007) Multiple trial vectors in differential evolution for engineering design. Eng Optim 39:567–589MathSciNet Montes EM, Coello C, Reyes J, Mun˜oz-Da´vila L (2007) Multiple trial vectors in differential evolution for engineering design. Eng Optim 39:567–589MathSciNet
68.
Zurück zum Zitat Coelho L (2010) Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Exp Syst Appl 37:1676–1683 Coelho L (2010) Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Exp Syst Appl 37:1676–1683
69.
Zurück zum Zitat Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612 Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612
70.
Zurück zum Zitat Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845MathSciNetMATH Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845MathSciNetMATH
71.
Zurück zum Zitat Isiet M, Gadala M (2020) Sensitivity analysis of control parameters in particle swarm optimization. J Comput Sci 41:1–33MathSciNet Isiet M, Gadala M (2020) Sensitivity analysis of control parameters in particle swarm optimization. J Comput Sci 41:1–33MathSciNet
72.
Zurück zum Zitat Ray T, Liew KM (2003) Society and civilization: an optimization algorithm based on the simulation of social behaviour. IEEE Trans Evol Comput 7(4):386–396 Ray T, Liew KM (2003) Society and civilization: an optimization algorithm based on the simulation of social behaviour. IEEE Trans Evol Comput 7(4):386–396
73.
Zurück zum Zitat Zhang M, Luo W, Wang X (2008) Differential evolution with dynamic stochastic selection for constrained optimization. Inf Sci 178(15):3043–3074 Zhang M, Luo W, Wang X (2008) Differential evolution with dynamic stochastic selection for constrained optimization. Inf Sci 178(15):3043–3074
74.
Zurück zum Zitat Garg H (2019) A hybrid GSA-GA algorithm for constrained optimization problems. Inf Sci 478:499–523 Garg H (2019) A hybrid GSA-GA algorithm for constrained optimization problems. Inf Sci 478:499–523
Metadaten
Titel
An advanced Hybrid Algorithm for Engineering Design Optimization
verfasst von
Pooja Verma
Raghav Prasad Parouha
Publikationsdatum
07.07.2021
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 5/2021
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-021-10541-7

Weitere Artikel der Ausgabe 5/2021

Neural Processing Letters 5/2021 Zur Ausgabe

Neuer Inhalt