Skip to main content
Erschienen in:

17.01.2024 | Technical Paper

An air quality forecasting method using fuzzy time series with butterfly optimization algorithm

verfasst von: Samit Bhanja, Abhishek Das

Erschienen in: Microsystem Technologies | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Air quality forecasting is an important application area of the time series forecasting problem. The successful prediction of the air quality of a place well in advance can able to help administrators to take the necessary steps to control air pollution. The administrator can also warn the citizens about the adverse effect of air pollution in advance. In this study, an air quality forecasting method is proposed to successfully forecast the air quality of a place. Here the type-2 fuzzy time series (FTS) forecasting method is applied to predict air quality. The performance of any FTS heavily depends on the selection of its hyperparameters. In this letter, a fuzzy time series optimization (FTSBO) algorithm is proposed to optimize all the hyperparameters of the FTS forecasting method. The proposed FTSBO algorithm originated from the butterfly optimization technique. In this work, the performance of the proposed forecasting method is also compared to the well-known forecasting methods. The simulation results established that the proposed forecasting method produces satisfactory performance, and its performance is better in comparison to other well-known forecasting methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alweshah M, Khalaileh SA, Gupta BB, Almomani A, Hammouri AI, Al-Betar MA (2020) The monarch butterfly optimization algorithm for solving feature selection problems. Neural Comput Applications 34:1–15 Alweshah M, Khalaileh SA, Gupta BB, Almomani A, Hammouri AI, Al-Betar MA (2020) The monarch butterfly optimization algorithm for solving feature selection problems. Neural Comput Applications 34:1–15
Zurück zum Zitat Alyousifi Y, Othman M, Faye I, Sokkalingam R, Silva PC (2020) Markov weighted fuzzy time-series model based on an optimum partition method for forecasting air pollution. Int J Fuzzy Syst 22(5):1468–1486CrossRef Alyousifi Y, Othman M, Faye I, Sokkalingam R, Silva PC (2020) Markov weighted fuzzy time-series model based on an optimum partition method for forecasting air pollution. Int J Fuzzy Syst 22(5):1468–1486CrossRef
Zurück zum Zitat Arora S, Singh S (2017) Node localization in wireless sensor networks using butterfly optimization algorithm. Arab J Sci Eng 42:3325–3335CrossRef Arora S, Singh S (2017) Node localization in wireless sensor networks using butterfly optimization algorithm. Arab J Sci Eng 42:3325–3335CrossRef
Zurück zum Zitat Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734CrossRef Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734CrossRef
Zurück zum Zitat Arora S, Singh S, Yetilmezsoy K (2018) A modified butterfly optimization algorithm for mechanical design optimization problems. J Braz Soc Mech Sci Eng 40:1–17CrossRef Arora S, Singh S, Yetilmezsoy K (2018) A modified butterfly optimization algorithm for mechanical design optimization problems. J Braz Soc Mech Sci Eng 40:1–17CrossRef
Zurück zum Zitat Belavadi SV, Rajagopal S, Ranjani R, Mohan R (2020) Air quality forecasting using LSTM RNN and wireless sensor networks. Procedia Comput Sci 170:241–248CrossRef Belavadi SV, Rajagopal S, Ranjani R, Mohan R (2020) Air quality forecasting using LSTM RNN and wireless sensor networks. Procedia Comput Sci 170:241–248CrossRef
Zurück zum Zitat Bendahmane A, Tlemsani R (2023) Unknown area exploration for robots with energy constraints using a modified butterfly optimization algorithm. Soft Comput 27(7):3785–3804CrossRef Bendahmane A, Tlemsani R (2023) Unknown area exploration for robots with energy constraints using a modified butterfly optimization algorithm. Soft Comput 27(7):3785–3804CrossRef
Zurück zum Zitat Bhanja S, Das A (2021) A hybrid deep learning model for air quality time series prediction. Indonesian J Electr Eng Comput Sci 22(3):1611–1618CrossRef Bhanja S, Das A (2021) A hybrid deep learning model for air quality time series prediction. Indonesian J Electr Eng Comput Sci 22(3):1611–1618CrossRef
Zurück zum Zitat Bose M, Mali K (2019) Designing fuzzy time series forecasting models: a survey. Int J Appr Reason 111:78–99MathSciNetCrossRef Bose M, Mali K (2019) Designing fuzzy time series forecasting models: a survey. Int J Appr Reason 111:78–99MathSciNetCrossRef
Zurück zum Zitat Cabaneros SM, Calautit JK, Hughes BR (2019) A review of artificial neural network models for ambient air pollution prediction. Environ Model Softw 119:285–304CrossRef Cabaneros SM, Calautit JK, Hughes BR (2019) A review of artificial neural network models for ambient air pollution prediction. Environ Model Softw 119:285–304CrossRef
Zurück zum Zitat Coker E, Kizito S (2018) A narrative review on the human health effects of ambient air pollution in sub-Saharan Africa: an urgent need for health effects studies. Int J Environ Res Public Health 15(3):427CrossRef Coker E, Kizito S (2018) A narrative review on the human health effects of ambient air pollution in sub-Saharan Africa: an urgent need for health effects studies. Int J Environ Res Public Health 15(3):427CrossRef
Zurück zum Zitat Delavar MR, Gholami A, Shiran GR, Rashidi Y, Nakhaeizadeh GR, Fedra K, Hatefi Afshar S (2019) A novel method for improving air pollution prediction based on machine learning approaches: a case study applied to the capital city of Tehran. ISPRS Int J Geo-Inf 8(2):99CrossRef Delavar MR, Gholami A, Shiran GR, Rashidi Y, Nakhaeizadeh GR, Fedra K, Hatefi Afshar S (2019) A novel method for improving air pollution prediction based on machine learning approaches: a case study applied to the capital city of Tehran. ISPRS Int J Geo-Inf 8(2):99CrossRef
Zurück zum Zitat Fan Y, Shao J, Sun G, Shao X (2020) A self-adaption butterfly optimization algorithm for numerical optimization problems. IEEE Access 8:88026–88041CrossRef Fan Y, Shao J, Sun G, Shao X (2020) A self-adaption butterfly optimization algorithm for numerical optimization problems. IEEE Access 8:88026–88041CrossRef
Zurück zum Zitat Jassim MS, Coskuner G (2017) Assessment of spatial variations of particulate matter (pm10 and pm2.5) in Bahrain identified by air quality index (AQI). Arab J Geosci 10(1):1–14CrossRef Jassim MS, Coskuner G (2017) Assessment of spatial variations of particulate matter (pm10 and pm2.5) in Bahrain identified by air quality index (AQI). Arab J Geosci 10(1):1–14CrossRef
Zurück zum Zitat Kumar K, Pande B (2023) Air pollution prediction with machine learning: a case study of Indian cities. Int J Environ Sci Technol 20(5):5333–5348CrossRef Kumar K, Pande B (2023) Air pollution prediction with machine learning: a case study of Indian cities. Int J Environ Sci Technol 20(5):5333–5348CrossRef
Zurück zum Zitat Kumar N, Susan S (2021) Particle swarm optimization of partitions and fuzzy order for fuzzy time series forecasting of covid-19. Appl Soft Comput 110:107611CrossRef Kumar N, Susan S (2021) Particle swarm optimization of partitions and fuzzy order for fuzzy time series forecasting of covid-19. Appl Soft Comput 110:107611CrossRef
Zurück zum Zitat Liu H, Li Q, Yu D, Gu Y (2019) Air quality index and air pollutant concentration prediction based on machine learning algorithms. Appl Sci 9(19):4069CrossRef Liu H, Li Q, Yu D, Gu Y (2019) Air quality index and air pollutant concentration prediction based on machine learning algorithms. Appl Sci 9(19):4069CrossRef
Zurück zum Zitat Mokhtari M, Miri M, Mohammadi A, Khorsandi H, Hajizadeh Y, Abdolahnejad A (2015) Assessment of air quality index and health impact of pm10, pm2.5 and so2 in Yazd, Iran. J Mazandaran Univ Med Sci 25(131):14–23 Mokhtari M, Miri M, Mohammadi A, Khorsandi H, Hajizadeh Y, Abdolahnejad A (2015) Assessment of air quality index and health impact of pm10, pm2.5 and so2 in Yazd, Iran. J Mazandaran Univ Med Sci 25(131):14–23
Zurück zum Zitat Pant M, Kumar S (2022) Particle swarm optimization and intuitionistic fuzzy set-based novel method for fuzzy time series forecasting. Granular Comput 7(2):285–303CrossRef Pant M, Kumar S (2022) Particle swarm optimization and intuitionistic fuzzy set-based novel method for fuzzy time series forecasting. Granular Comput 7(2):285–303CrossRef
Zurück zum Zitat Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57CrossRef Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57CrossRef
Zurück zum Zitat Salvador S, Chan P (2007) Toward accurate dynamic time warping in linear time and space. Intell Data Anal 11(5):561–580CrossRef Salvador S, Chan P (2007) Toward accurate dynamic time warping in linear time and space. Intell Data Anal 11(5):561–580CrossRef
Zurück zum Zitat Saxena P, Sharma K, Easo S (2012) Forecasting enrollments based on fuzzy time series with higher forecast accuracy rate. Int J Comput Technol Applications 3(3):957–961 Saxena P, Sharma K, Easo S (2012) Forecasting enrollments based on fuzzy time series with higher forecast accuracy rate. Int J Comput Technol Applications 3(3):957–961
Zurück zum Zitat Shang K, Chen Z, Liu Z, Song L, Zheng W, Yang B, Liu S, Yin L (2021) Haze prediction model using deep recurrent neural network. Atmosphere 12(12):1625CrossRef Shang K, Chen Z, Liu Z, Song L, Zheng W, Yang B, Liu S, Yin L (2021) Haze prediction model using deep recurrent neural network. Atmosphere 12(12):1625CrossRef
Zurück zum Zitat Song Q, Chissom BS (1993a) Forecasting enrollments with fuzzy time series-part I. Fuzzy Sets Syst 54(1):1–9CrossRef Song Q, Chissom BS (1993a) Forecasting enrollments with fuzzy time series-part I. Fuzzy Sets Syst 54(1):1–9CrossRef
Zurück zum Zitat Tubishat M, Alswaitti M, Mirjalili S, Al-Garadi MA, Rana TA et al (2020) Dynamic butterfly optimization algorithm for feature selection. IEEE Access 8:194303–194314CrossRef Tubishat M, Alswaitti M, Mirjalili S, Al-Garadi MA, Rana TA et al (2020) Dynamic butterfly optimization algorithm for feature selection. IEEE Access 8:194303–194314CrossRef
Zurück zum Zitat Van Tinh N (2020) Forecasting of covid-19 confirmed cases in Vietnam using fuzzy time series model combined with particle swarm optimization. Comput Res Prog Appl Sci Eng 6(2):114–120 Van Tinh N (2020) Forecasting of covid-19 confirmed cases in Vietnam using fuzzy time series model combined with particle swarm optimization. Comput Res Prog Appl Sci Eng 6(2):114–120
Zurück zum Zitat Wang J, Li H, Lu H (2018) Application of a novel early warning system based on fuzzy time series in urban air quality forecasting in China. Appl Soft Comput 71:783–799CrossRef Wang J, Li H, Lu H (2018) Application of a novel early warning system based on fuzzy time series in urban air quality forecasting in China. Appl Soft Comput 71:783–799CrossRef
Zurück zum Zitat Wang J, Li J, Wang X, Wang J, Huang M (2021) Air quality prediction using ct-lstm. Neural Comput Applications 33(10):4779–4792CrossRef Wang J, Li J, Wang X, Wang J, Huang M (2021) Air quality prediction using ct-lstm. Neural Comput Applications 33(10):4779–4792CrossRef
Zurück zum Zitat Wang Y, Zhang Y, Zhang C, Zhou J, Hu D, Yi F, Fan Z, Zeng T (2023) Genetic algorithm-based fuzzy optimization of energy management strategy for fuel cell vehicles considering driving cycles recognition. Energy 263:126112CrossRef Wang Y, Zhang Y, Zhang C, Zhou J, Hu D, Yi F, Fan Z, Zeng T (2023) Genetic algorithm-based fuzzy optimization of energy management strategy for fuel cell vehicles considering driving cycles recognition. Energy 263:126112CrossRef
Zurück zum Zitat Xian S, Chen K, Cheng Y (2022) Improved seagull optimization algorithm of partition and XGboost of prediction for fuzzy time series forecasting of covid-19 daily confirmed. Adv Eng Softw 173:103212CrossRef Xian S, Chen K, Cheng Y (2022) Improved seagull optimization algorithm of partition and XGboost of prediction for fuzzy time series forecasting of covid-19 daily confirmed. Adv Eng Softw 173:103212CrossRef
Zurück zum Zitat Yang H, Jiang P, Wang Y, Li H (2022) A fuzzy intelligent forecasting system based on combined fuzzification strategy and improved optimization algorithm for renewable energy power generation. Appl Energy 325:119849CrossRef Yang H, Jiang P, Wang Y, Li H (2022) A fuzzy intelligent forecasting system based on combined fuzzification strategy and improved optimization algorithm for renewable energy power generation. Appl Energy 325:119849CrossRef
Zurück zum Zitat Yıldız BS, Yıldız AR, Albak Eİ, Abderazek H, Sait SM, Bureerat S (2020) Butterfly optimization algorithm for optimum shape design of automobile suspension components. Mater Testing 62(4):365–370CrossRef Yıldız BS, Yıldız AR, Albak Eİ, Abderazek H, Sait SM, Bureerat S (2020) Butterfly optimization algorithm for optimum shape design of automobile suspension components. Mater Testing 62(4):365–370CrossRef
Zurück zum Zitat Yuan G, Yang W (2019) Evaluating China’s air pollution control policy with extended AQI indicator system: example of the Beijing-Tianjin-Hebei region. Sustainability 11(3):939CrossRef Yuan G, Yang W (2019) Evaluating China’s air pollution control policy with extended AQI indicator system: example of the Beijing-Tianjin-Hebei region. Sustainability 11(3):939CrossRef
Zurück zum Zitat Zhang J, Li S (2022) Air quality index forecast in Beijing based on CNN-LSTM multi-model. Chemosphere 308:136180CrossRef Zhang J, Li S (2022) Air quality index forecast in Beijing based on CNN-LSTM multi-model. Chemosphere 308:136180CrossRef
Metadaten
Titel
An air quality forecasting method using fuzzy time series with butterfly optimization algorithm
verfasst von
Samit Bhanja
Abhishek Das
Publikationsdatum
17.01.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 5/2024
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-023-05591-x