Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.06.2015 | Original Article | Ausgabe 3/2015

International Journal of Machine Learning and Cybernetics 3/2015

An algorithm selection based platform for image understanding using high-level symbolic feedback and machine learning

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 3/2015
Autoren:
Martin Lukac, Michitaka Kameyama

Abstract

Natural image processing and understanding encompasses hundreds of different algorithms. Each algorithm generates best results for a particular set of input features and configurations of the objects/regions in the input image (environment). To obtain the best possible result of processing in a reliable manner, we propose an algorithm selection approach that selects the best algorithm for a each input image. The proposed algorithm selection starts by first selecting an algorithm using low level features such as color intensity, histograms, spectral coefficients or so and a user given context if available. The resulting high-level image description is analyzed for logical inconsistencies (contradictions) and image regions that must be processed using a different algorithm are selected. The high-level description and the optional user-given context are used by a Bayesian Network to estimate the cause of the error in the processing. The same Bayesian Network also generates new candidate algorithm for each region containing the contradiction in an iterative manner. This iterative selection stops when the high-level inconsistencies are all resolved or no more different algorithms can be selected. We also show that when inconsistencies can be detected, our framework is able to improve high-level description when compared with single algorithms. In order for such complex and iterative processing being computationally tractable we also introduce a hardware platform based on reconfigurable VLSI that is well suited as the platform of the proposed approach. We show that the algorithm selected approach is ideally suited for either a hybrid type VLSI processor or for a Logic-In-Memory processing platform.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2015

International Journal of Machine Learning and Cybernetics 3/2015 Zur Ausgabe