Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 7/2017

23.03.2017 | Original Paper

An Analytical Method for Determining the Convection Heat Transfer Coefficient Between Flowing Fluid and Rock Fracture Walls

verfasst von: Bing Bai, Yuanyuan He, Shaobin Hu, Xiaochun Li

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 7/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The convective heat transfer coefficient (HTC) is a useful indicator that characterizes the convective heat transfer properties between flowing fluid and hot dry rock. An analytical method is developed to explore a more realistic formula for the HTC. First, a heat transfer model is described that can be used to determine the general expression of the HTC. As one of the novel elements, the new model can consider an arbitrary function of temperature distribution on the fracture wall along the direction of the rock radius. The resulting Dirichlet problem of the Laplace equation on a semi-disk is successfully solved with the Green’s function method. Four specific formulas for the HTC are derived and compared by assuming the temperature distributions along the radius of the fracture wall to be zeroth-, first-, second-, and third-order polynomials. Comparative verification of the four specific formulas based on the test data shows that the formula A corresponding to the zeroth-order polynomial always predicts stable HTC values. At low flow rates, the four formulas predict similar values of HTC, but at higher flow rates, formulas B and D, respectively, corresponding to the first- and third-order polynomials, predict either too large or too small values of the HTC, while formula C, corresponding to the second-order polynomial, predicts relatively acceptable HTC values. However, we cannot tell which one is the more rational formula between formulas A and C due to the limited information measured. One of the clear advantages of formula C is that it can avoid the drawbacks of the discontinuity of temperature and the singular integral of HTC at the points (±R, 0). Further experimental work to measure the actual temperature distribution of water in the fracture will be of great value. It is also found that the absorbed heat of the fluid, Q, has a significant impact on the prediction results of the HTC. The temperatures at the inlet and the outlet used for Q should be consistent with the assumptions adopted in the derivation of its corresponding HTC formula. A mismatched value of Q might be the reason that some existing HTC formulas predict negative or extremely large HTCs at high flow rates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Asmar NH (2005) Partial Differential equations with fourier series and boundary value problems, 2nd edn. ISBN:0-13-148096-0 Asmar NH (2005) Partial Differential equations with fourier series and boundary value problems, 2nd edn. ISBN:0-13-148096-0
Zurück zum Zitat Bai B, He Y, Li X, Hu S (2016) Local heat transfer characteristics of water flowing through a single fracture within a cylindrical granite specimen. Environ Earth Sci 75:1460. doi:10.1007/s12665-016-6249-2 CrossRef Bai B, He Y, Li X, Hu S (2016) Local heat transfer characteristics of water flowing through a single fracture within a cylindrical granite specimen. Environ Earth Sci 75:1460. doi:10.​1007/​s12665-016-6249-2 CrossRef
Zurück zum Zitat Bai B, He Y, Li X, Li J, Huang X, Zhu J (2017) Experimental and analytical study of the overall heat transfer coefficient of water flowing through a single fracture in a granite core. Appl Therm Eng 116:79–90CrossRef Bai B, He Y, Li X, Li J, Huang X, Zhu J (2017) Experimental and analytical study of the overall heat transfer coefficient of water flowing through a single fracture in a granite core. Appl Therm Eng 116:79–90CrossRef
Zurück zum Zitat Huang X, Zhu J, Li J, Bai B, Zhang G (2016) Fluid friction and heat transfer through a single rough fracture in granitic rock under confining pressure. Int Commun Heat Mass Transf 1(1):111–123 Huang X, Zhu J, Li J, Bai B, Zhang G (2016) Fluid friction and heat transfer through a single rough fracture in granitic rock under confining pressure. Int Commun Heat Mass Transf 1(1):111–123
Zurück zum Zitat ISRM (1978) Suggested methods for determining tensile strength of rock materials part 2: suggested Method for determining indirect tensile strength by the Brazil Test. Int J Rock Mech Min Sci 15:99–103CrossRef ISRM (1978) Suggested methods for determining tensile strength of rock materials part 2: suggested Method for determining indirect tensile strength by the Brazil Test. Int J Rock Mech Min Sci 15:99–103CrossRef
Zurück zum Zitat Lu W, Xiang YY (2012) Experiments and sensitivity analyses for heat transfer in a meter-scale regularly fractured granite model with water flow. J Zhejiang Univ Sci A 13(12):958–968CrossRef Lu W, Xiang YY (2012) Experiments and sensitivity analyses for heat transfer in a meter-scale regularly fractured granite model with water flow. J Zhejiang Univ Sci A 13(12):958–968CrossRef
Zurück zum Zitat Mohais R, Xu C, Dowd PA (2011) Fluid flow and heat transfer within a single horizontal fracture in an enhanced geothermal system. ASME J Heat Transf 133:112603-1–112603-8CrossRef Mohais R, Xu C, Dowd PA (2011) Fluid flow and heat transfer within a single horizontal fracture in an enhanced geothermal system. ASME J Heat Transf 133:112603-1–112603-8CrossRef
Zurück zum Zitat Ogino F, Yamamura M, Fukuda T (1999) Heat transfer from hot dry rock to water flowing through a circular fracture. Geothermics 28(1):21–44CrossRef Ogino F, Yamamura M, Fukuda T (1999) Heat transfer from hot dry rock to water flowing through a circular fracture. Geothermics 28(1):21–44CrossRef
Zurück zum Zitat Xu RN, Zhang L, Zhang FZ, Jiang PX (2015) A review on heat transfer and energy conversion in the enhanced geothermal systems with water/CO2 as working fluid. Int J Energy Res 39(13):1722–1741CrossRef Xu RN, Zhang L, Zhang FZ, Jiang PX (2015) A review on heat transfer and energy conversion in the enhanced geothermal systems with water/CO2 as working fluid. Int J Energy Res 39(13):1722–1741CrossRef
Zurück zum Zitat Zhang G, Zhu J, Li J, Wan Q (2015) The analytical solution of the water-rock heat transfer coefficient and sensitivity analyses of parameters. Proceedings World Geothermal Congress, Melbourne, Australia Zhang G, Zhu J, Li J, Wan Q (2015) The analytical solution of the water-rock heat transfer coefficient and sensitivity analyses of parameters. Proceedings World Geothermal Congress, Melbourne, Australia
Zurück zum Zitat Zhao J (1987) Experimental studies of the hydro-thermo-mechanical behavior of joints in granite. Imperial College, London Zhao J (1987) Experimental studies of the hydro-thermo-mechanical behavior of joints in granite. Imperial College, London
Zurück zum Zitat Zhao J (1992) Analytical and experimental studies of heat convection by water flow in rock fractures. In: Tillerson JRWW (ed) Proceeding of 33rd US Symposium on Rock Mechanics. Balkema, Rotterdam Zhao J (1992) Analytical and experimental studies of heat convection by water flow in rock fractures. In: Tillerson JRWW (ed) Proceeding of 33rd US Symposium on Rock Mechanics. Balkema, Rotterdam
Zurück zum Zitat Zhao J (1999) Experimental study of flow-rock heat transfer in rock fractures. Chin J Rock Mech Eng 18(02):1–5 Zhao J (1999) Experimental study of flow-rock heat transfer in rock fractures. Chin J Rock Mech Eng 18(02):1–5
Zurück zum Zitat Zhao ZH (2014) On the heat transfer coefficient between rock fracture walls and flowing fluid. Comput Geotech 59:105–111CrossRef Zhao ZH (2014) On the heat transfer coefficient between rock fracture walls and flowing fluid. Comput Geotech 59:105–111CrossRef
Zurück zum Zitat Zhao J, Brown ET (1992) Hydro-thermo-mechanical properties of joints in the carnmenellis granite. Q J Eng Geol 25(4):279–290CrossRef Zhao J, Brown ET (1992) Hydro-thermo-mechanical properties of joints in the carnmenellis granite. Q J Eng Geol 25(4):279–290CrossRef
Zurück zum Zitat Zhao J, Tso CP (1993) Heat-transfer by water-flow in rock fractures and the application to hot dry rock geothermal systems. Int J Rock Mech Min Sci Geomech Abstr 30(6):633–641CrossRef Zhao J, Tso CP (1993) Heat-transfer by water-flow in rock fractures and the application to hot dry rock geothermal systems. Int J Rock Mech Min Sci Geomech Abstr 30(6):633–641CrossRef
Metadaten
Titel
An Analytical Method for Determining the Convection Heat Transfer Coefficient Between Flowing Fluid and Rock Fracture Walls
verfasst von
Bing Bai
Yuanyuan He
Shaobin Hu
Xiaochun Li
Publikationsdatum
23.03.2017
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 7/2017
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-017-1202-6

Weitere Artikel der Ausgabe 7/2017

Rock Mechanics and Rock Engineering 7/2017 Zur Ausgabe