Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

31.03.2017 | New Trends in data pre-processing methods for signal and image classification | Ausgabe 10/2017

Neural Computing and Applications 10/2017

An approach for feature selection using local searching and global optimization techniques

Zeitschrift:
Neural Computing and Applications > Ausgabe 10/2017
Autoren:
Sadhana Tiwari, Birmohan Singh, Manpreet Kaur

Abstract

Classification problems such as gene expression array analysis, text processing of Internet document, combinatorial chemistry, software defect prediction and image retrieval involve tens or hundreds of thousands of features in the dataset. However, many of these features may be irrelevant and redundant, which only worsen the performance of the learning algorithms, and this may lead to the problem of overfitting. These superfluous features only degrade the accuracy and the computation time of a classification algorithm. So, the selection of relevant and nonredundant features is an important preprocessing step of any classification problem. Most of the global optimization techniques have the ability to converge to a solution quickly, but these begin with initializing a population randomly and the choice of initial population is an important step. In this paper, local searching algorithms have been used for generating a subset of relevant and nonredundant features; thereafter, a global optimization algorithm has been used so as to remove the limitations of global optimization algorithms, like lack of consistency in classification results and very high time complexity, to some extent. The computation time and classification accuracy are improved by using a feature set obtained from sequential backward selection and mutual information maximization algorithm which is fed to a global optimization technique (genetic algorithm, differential evolution or particle swarm optimization). In this proposed work, the computation time of these global optimization techniques has been reduced by using variance as stopping criteria. The proposed approach has been tested on publicly available Sonar, Wdbc and German datasets.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 10/2017

Neural Computing and Applications 10/2017 Zur Ausgabe

New Trends in data pre-processing methods for signal and image classification

Automatic detection of respiratory arrests in OSA patients using PPG and machine learning techniques

New Trends in data pre-processing methods for signal and image classification

Muscular synergy classification and myoelectric control using high-order cross-cumulants

Premium Partner

    Bildnachweise